typesense/src/posting.cpp
Harpreet Sangar e78d209911 Add filter_result_t struct.
Add `reference_filter_result_t` struct.
Add support for lazy filtering.
Update `rearrange_filter_tree` to return approximate count of filter matches.
2023-03-10 18:18:46 +05:30

545 lines
18 KiB
C++

#include "posting.h"
#include "posting_list.h"
int64_t compact_posting_list_t::upsert(const uint32_t id, const std::vector<uint32_t>& offsets) {
return upsert(id, &offsets[0], offsets.size());
}
int64_t compact_posting_list_t::upsert(const uint32_t id, const uint32_t* offsets, uint32_t num_offsets) {
// format: num_offsets, offset1,..,offsetn, id1 | num_offsets, offset1,..,offsetn, id2
uint32_t last_id = (length == 0) ? 0 : id_offsets[length - 1];
int64_t extra_length_needed = 0;
if(length == 0 || id > last_id) {
extra_length_needed = (num_offsets + 2);
if(length + extra_length_needed > capacity) {
// enough storage should have been provided upstream
return (length + extra_length_needed) - capacity;
}
// can just append to the end
id_offsets[length++] = num_offsets;
for(size_t i = 0; i < num_offsets; i++) {
id_offsets[length+i] = offsets[i];
}
length += num_offsets;
id_offsets[length++] = id;
ids_length++;
} else {
// locate position and shift contents to make space available
int64_t i = 0;
while(i < length) {
size_t num_existing_offsets = id_offsets[i];
size_t existing_id = id_offsets[i + num_existing_offsets + 1];
if(existing_id == id) {
extra_length_needed = (num_offsets - num_existing_offsets);
if(extra_length_needed > 0) {
if(length + extra_length_needed > capacity) {
// enough storage should have been provided upstream
return (length + extra_length_needed) - capacity;
}
// shift offsets to the right to make space
int64_t shift_index = int64_t(length) + extra_length_needed - 1;
while(shift_index >= i && (shift_index - extra_length_needed) >= 0) {
id_offsets[shift_index] = id_offsets[shift_index - extra_length_needed];
shift_index--;
}
} else if(extra_length_needed < 0) {
// shift offsets to the left to reduce space
// [num_offsets][0][2][4][id]
// [num_offsets][0][id]
size_t offset_diff = (num_existing_offsets - num_offsets);
size_t start_index = i + 1 + offset_diff;
while(start_index < length - offset_diff) {
id_offsets[start_index] = id_offsets[start_index + offset_diff];
start_index++;
}
}
id_offsets[i] = num_offsets;
for(size_t j = 0; j < num_offsets; j++) {
id_offsets[i + 1 + j] = offsets[j];
}
id_offsets[i+1+num_offsets] = id;
break;
}
else if(existing_id > id) {
extra_length_needed = (num_offsets + 2);
if(length + extra_length_needed > capacity) {
// enough storage should have been provided upstream
return (length + extra_length_needed) - capacity;
}
// shift index [i..length-1] by `extra_length_needed` positions
int64_t shift_index = length + extra_length_needed - 1;
while((shift_index - extra_length_needed) >= 0 && shift_index >= i) {
// [*1 1 4] [1 1 7]
// [1 1 3]
id_offsets[shift_index] = id_offsets[shift_index - extra_length_needed];
shift_index--;
}
// now store the new offsets in the shifted space
id_offsets[i++] = num_offsets;
for (size_t j = 0; j < num_offsets; j++) {
id_offsets[i+j] = offsets[j];
}
i += num_offsets;
id_offsets[i++] = id;
ids_length++;
break;
}
i += num_existing_offsets + 2;
}
length += extra_length_needed; // extra_length_needed can be negative here but that's okay
}
return 0;
}
void compact_posting_list_t::erase(const uint32_t id) {
// locate position and shift contents to collapse space vacated
size_t i = 0;
while(i < length) {
size_t num_existing_offsets = id_offsets[i];
size_t existing_id = id_offsets[i + num_existing_offsets + 1];
if(existing_id > id) {
// not found!
return ;
}
if(existing_id == id) {
size_t shift_offset = num_existing_offsets + 2;
while(i+shift_offset < length) {
id_offsets[i] = id_offsets[i+shift_offset];
i++;
}
length -= shift_offset;
break;
}
i += num_existing_offsets + 2;
}
ids_length--;
}
compact_posting_list_t* compact_posting_list_t::create(uint32_t num_ids, const uint32_t* ids, const uint32_t* offset_index,
uint32_t num_offsets, const uint32_t* offsets) {
// format: num_offsets, offset1,..,offsetn, id1 | num_offsets, offset1,..,offsetn, id2
size_t length_required = num_offsets + (2 * num_ids);
compact_posting_list_t* pl = (compact_posting_list_t*) malloc(sizeof(compact_posting_list_t) +
(length_required * sizeof(uint32_t)));
pl->length = 0;
pl->capacity = length_required;
pl->ids_length = 0;
for(size_t i = 0; i < num_ids; i++) {
uint32_t start_offset = offset_index[i];
uint32_t next_start_offset = (i == num_ids-1) ? num_offsets : offset_index[i+1];
pl->upsert(ids[i], offsets+start_offset, (next_start_offset - start_offset));
}
return pl;
}
posting_list_t* compact_posting_list_t::to_full_posting_list() const {
posting_list_t* pl = new posting_list_t(posting_t::MAX_BLOCK_ELEMENTS);
size_t i = 0;
while(i < length) {
size_t num_existing_offsets = id_offsets[i];
i++;
std::vector<uint32_t> offsets(num_existing_offsets);
for(size_t j = 0; j < num_existing_offsets; j++) {
auto offset = id_offsets[i + j];
offsets[j] = offset;
}
size_t existing_id = id_offsets[i + num_existing_offsets];
pl->upsert(existing_id, offsets);
i += num_existing_offsets + 1;
}
return pl;
}
uint32_t compact_posting_list_t::last_id() {
return (length == 0) ? UINT32_MAX : id_offsets[length - 1];
}
uint32_t compact_posting_list_t::num_ids() const {
return ids_length;
}
uint32_t compact_posting_list_t::first_id() {
if(length == 0) {
return 0;
}
return id_offsets[id_offsets[0] + 1];
}
bool compact_posting_list_t::contains(uint32_t id) {
size_t i = 0;
while(i < length) {
size_t num_existing_offsets = id_offsets[i];
size_t existing_id = id_offsets[i + num_existing_offsets + 1];
if(existing_id > id) {
// not found!
return false;
}
if(existing_id == id) {
return true;
}
i += num_existing_offsets + 2;
}
return false;
}
bool compact_posting_list_t::contains_atleast_one(const uint32_t* target_ids, size_t target_ids_size) {
size_t i = 0;
size_t target_ids_index = 0;
while(i < length && target_ids_index < target_ids_size) {
size_t num_existing_offsets = id_offsets[i];
size_t existing_id = id_offsets[i + num_existing_offsets + 1];
// Returns iterator to the first element that is >= to value or last if no such element is found.
size_t found_index = std::lower_bound(target_ids + target_ids_index,
target_ids + target_ids_size, existing_id) - target_ids;
if(found_index == target_ids_size) {
// all elements are lesser than lowest value (existing_id), so we can stop looking
return false;
} else {
if(target_ids[found_index] == existing_id) {
return true;
}
// adjust lower bound to found_index+1 whose value is >= `existing_id`
target_ids_index = found_index;
}
i += num_existing_offsets + 2;
}
return false;
}
/* posting operations */
void posting_t::upsert(void*& obj, uint32_t id, const std::vector<uint32_t>& offsets) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = (compact_posting_list_t*) RAW_POSTING_PTR(obj);
int64_t extra_capacity_required = list->upsert(id, offsets);
if(extra_capacity_required == 0) {
// upsert succeeded
return;
}
if((list->capacity + extra_capacity_required) > COMPACT_LIST_THRESHOLD_LENGTH) {
// we have to convert to a full posting list
posting_list_t* full_list = list->to_full_posting_list();
free(list);
obj = full_list;
}
else {
// grow the container by 30%
size_t new_capacity = std::min<size_t>((list->capacity + extra_capacity_required) * 1.3,
COMPACT_LIST_THRESHOLD_LENGTH);
size_t new_capacity_bytes = sizeof(compact_posting_list_t) + (new_capacity * sizeof(uint32_t));
auto new_list = (compact_posting_list_t *) realloc(list, new_capacity_bytes);
if(new_list == nullptr) {
abort();
}
list = new_list;
list->capacity = new_capacity;
obj = SET_COMPACT_POSTING(list);
list->upsert(id, offsets);
return ;
}
}
// either `obj` is already a full list or was converted to a full list above
posting_list_t* list = (posting_list_t*)(obj);
list->upsert(id, offsets);
}
void posting_t::erase(void*& obj, uint32_t id) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
list->erase(id);
// if the list becomes too small, we resize it to save memory
if(list->length < list->capacity/2) {
// resize container
size_t new_capacity = list->capacity/2;
size_t new_capacity_bytes = sizeof(compact_posting_list_t) + (new_capacity * sizeof(uint32_t));
auto new_list = (compact_posting_list_t *) realloc(list, new_capacity_bytes);
if(new_list == nullptr) {
abort();
}
list = new_list;
list->capacity = new_capacity;
obj = SET_COMPACT_POSTING(list);
}
} else {
posting_list_t* list = (posting_list_t*)(obj);
list->erase(id);
if(list->num_blocks() == 1 && ((2 * list->get_root()->size()) + list->get_root()->offsets.getLength()) <= COMPACT_LIST_THRESHOLD_LENGTH) {
// convert to compact posting format
auto root_block = list->get_root();
auto ids = root_block->ids.uncompress();
auto offset_index = root_block->offset_index.uncompress();
auto offsets = root_block->offsets.uncompress();
compact_posting_list_t* compact_list = compact_posting_list_t::create(
root_block->size(), ids, offset_index, root_block->offsets.getLength(), offsets
);
delete [] ids;
delete [] offset_index;
delete [] offsets;
delete list;
obj = SET_COMPACT_POSTING(compact_list);
}
}
}
uint32_t posting_t::num_ids(const void* obj) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
return list->num_ids();
} else {
posting_list_t* list = (posting_list_t*)(obj);
return list->num_ids();
}
}
uint32_t posting_t::first_id(const void* obj) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
return list->first_id();
} else {
posting_list_t* list = (posting_list_t*)(obj);
return list->first_id();
}
}
bool posting_t::contains(const void* obj, uint32_t id) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
return list->contains(id);
} else {
posting_list_t* list = (posting_list_t*)(obj);
return list->contains(id);
}
}
bool posting_t::contains_atleast_one(const void* obj, const uint32_t* target_ids, size_t target_ids_size) {
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
return list->contains_atleast_one(target_ids, target_ids_size);
} else {
posting_list_t* list = (posting_list_t*)(obj);
return list->contains_atleast_one(target_ids, target_ids_size);
}
}
void posting_t::merge(const std::vector<void*>& raw_posting_lists, std::vector<uint32_t>& result_ids) {
// we will have to convert the compact posting list (if any) to full form
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
posting_list_t::merge(plists, result_ids);
for(posting_list_t* expanded_plist: expanded_plists) {
delete expanded_plist;
}
}
void posting_t::intersect(const std::vector<void*>& raw_posting_lists, std::vector<uint32_t>& result_ids,
const uint32_t& context_ids_length,
const uint32_t* context_ids) {
if (context_ids_length != 0) {
if (raw_posting_lists.empty()) {
return;
}
for (uint32_t i = 0; i < context_ids_length; i++) {
bool is_present = true;
for (auto const& raw_posting_list: raw_posting_lists) {
if (!contains(raw_posting_list, context_ids[i])) {
is_present = false;
break;
}
}
if (is_present) {
result_ids.push_back(context_ids[i]);
}
}
return;
}
// we will have to convert the compact posting list (if any) to full form
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
posting_list_t::intersect(plists, result_ids);
for(auto expanded_plist: expanded_plists) {
delete expanded_plist;
}
}
void posting_t::to_expanded_plists(const std::vector<void*>& raw_posting_lists, std::vector<posting_list_t*>& plists,
std::vector<posting_list_t*>& expanded_plists) {
for(size_t i = 0; i < raw_posting_lists.size(); i++) {
auto raw_posting_list = raw_posting_lists[i];
if(IS_COMPACT_POSTING(raw_posting_list)) {
auto compact_posting_list = COMPACT_POSTING_PTR(raw_posting_list);
posting_list_t* full_posting_list = compact_posting_list->to_full_posting_list();
plists.emplace_back(full_posting_list);
expanded_plists.push_back(full_posting_list);
} else {
posting_list_t* full_posting_list = (posting_list_t*)(raw_posting_list);
plists.emplace_back(full_posting_list);
}
}
}
void posting_t::destroy_list(void*& obj) {
if(obj == nullptr) {
return;
}
if(IS_COMPACT_POSTING(obj)) {
compact_posting_list_t* list = COMPACT_POSTING_PTR(obj);
free(list); // assigned via malloc, so must be free()d
} else {
posting_list_t* list = (posting_list_t*)(obj);
delete list;
}
obj = nullptr;
}
void posting_t::get_array_token_positions(uint32_t id, const std::vector<void*>& raw_posting_lists,
std::map<size_t, std::vector<token_positions_t>>& array_token_positions) {
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
std::vector<posting_list_t::iterator_t> its;
for(posting_list_t* pl: plists) {
its.push_back(pl->new_iterator());
its.back().skip_to(id);
if(!its.back().valid() || its.back().id() != id) {
its.pop_back();
}
}
if(!its.empty()) {
posting_list_t::get_offsets(its, array_token_positions);
}
for(posting_list_t* expanded_plist: expanded_plists) {
delete expanded_plist;
}
}
void posting_t::get_exact_matches(const std::vector<void*>& raw_posting_lists, const bool field_is_array,
const uint32_t* ids, const uint32_t num_ids,
uint32_t*& exact_ids, size_t& num_exact_ids) {
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
std::vector<posting_list_t::iterator_t> its;
for(posting_list_t* pl: plists) {
its.push_back(pl->new_iterator());
}
posting_list_t::get_exact_matches(its, field_is_array, ids, num_ids, exact_ids, num_exact_ids);
for(posting_list_t* expanded_plist: expanded_plists) {
delete expanded_plist;
}
}
void posting_t::get_matching_array_indices(const std::vector<void*>& raw_posting_lists,
uint32_t id, std::vector<size_t>& indices) {
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
std::vector<posting_list_t::iterator_t> its;
for(posting_list_t* pl: plists) {
its.push_back(pl->new_iterator());
}
posting_list_t::get_matching_array_indices(id, its, indices);
for(posting_list_t* expanded_plist: expanded_plists) {
delete expanded_plist;
}
}
void posting_t::get_phrase_matches(const std::vector<void*>& raw_posting_lists, bool field_is_array,
const uint32_t* ids, uint32_t num_ids, uint32_t*& phrase_ids, size_t& num_phrase_ids) {
std::vector<posting_list_t*> plists;
std::vector<posting_list_t*> expanded_plists;
to_expanded_plists(raw_posting_lists, plists, expanded_plists);
std::vector<posting_list_t::iterator_t> its;
for(posting_list_t* pl: plists) {
its.push_back(pl->new_iterator());
}
posting_list_t::get_phrase_matches(its, field_is_array, ids, num_ids, phrase_ids, num_phrase_ids);
for(posting_list_t* expanded_plist: expanded_plists) {
delete expanded_plist;
}
}