Lots of code clean up.

* Move stuff out of main to classes
* Standardize naming conventions.
This commit is contained in:
Kishore Nallan 2016-08-07 14:55:26 -07:00
parent 6c2974aaeb
commit ba33da1d51
11 changed files with 363 additions and 417 deletions

View File

@ -7,5 +7,5 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS_DEBUG} -std=c++11 -stdlib=libc++ -std=gnu
include_directories(include)
include_directories(external/for)
add_executable(search src/art.cpp src/intersection.cpp src/main.cpp)
target_link_libraries(search ${CMAKE_SOURCE_DIR}/external/for/libfor.a)
add_executable(search src/art.cpp src/intersection.cpp src/main.cpp src/search_index.cpp src/search_index.h)
target_link_libraries(search ${CMAKE_SOURCE_DIR}/external/for/libfor.a boost_system)

View File

@ -6,4 +6,9 @@ A typo tolerant, open source search engine that helps you build delightful searc
* [libfor](https://github.com/cruppstahl/for/)
## Building
* Switch to `external/libfor` and build libfor
* Install `boost`
© 2016 Wreally Studios Inc.

121
include/match_score.h Normal file
View File

@ -0,0 +1,121 @@
#pragma once
#include <stdint.h>
#include <vector>
#include <queue>
#include <stdlib.h>
#include <limits>
#ifdef DEBUG
#define D(x) x
#else
#define D(x)
#endif
struct MatchScore {
struct TokenPosition {
uint8_t token_id; // token identifier
uint16_t position; // token's position in the text
uint16_t position_index; // index of the position in the vector
bool operator() (const TokenPosition& a, const TokenPosition& b) {
return a.position > b.position;
}
};
#define addTopOfHeapToWindow(heap,q,token_positions,token_pos) {\
TokenPosition top = heap.top();\
heap.pop();\
q.push(top);\
token_pos[top.token_id] = top.position; \
top.position_index++;\
/* Must refill the heap - push the next position of the same token */\
if(top.position_index < token_positions[top.token_id].size()) {\
heap.push(TokenPosition{top.token_id, token_positions[top.token_id][top.position_index], top.position_index});\
}\
}
uint16_t words_present;
uint16_t distance;
/*
* Given *sorted positions* of each target token in a *single* document, generates a score that indicates:
* a) How many tokens are present in the document
* b) The proximity between the tokens in the document
*
* We use a priority queue to read the position vectors in a sorted manner, slide a window of a given size, and
* compute the max_match and min_displacement of target tokens across the windows.
*/
static MatchScore match_score(uint32_t doc_id, std::vector<std::vector<uint16_t>> &token_positions) {
const size_t WINDOW_SIZE = 20;
const size_t MAX_TOKENS_IN_A_QUERY = 20;
const uint16_t MAX_UINT_16 = std::numeric_limits<uint16_t>::max();
std::priority_queue<TokenPosition, std::vector<TokenPosition>, TokenPosition> heap;
for(uint8_t token_id=0; token_id < token_positions.size(); token_id++) {
heap.push(TokenPosition{token_id, token_positions[token_id].front(), 0});
}
// heap now contains the first occurring position of each token in the given document
uint16_t max_match = 1;
uint16_t min_displacement = UINT16_MAX;
std::queue<TokenPosition> q;
uint16_t token_pos[MAX_TOKENS_IN_A_QUERY] = { };
std::fill_n(token_pos, MAX_TOKENS_IN_A_QUERY, MAX_UINT_16);
do {
if(q.empty()) {
addTopOfHeapToWindow(heap, q, token_positions, token_pos);
}
D(cout << "Loop till window fills..." << endl;)
// Fill the queue with tokens within a given window frame size of the start position
// At the same time, we also record the *last* occurrence of each token within the window
// For e.g. if `cat` appeared at positions 1,3 and 5, we will record `token_pos[cat] = 5`
const uint16_t start_pos = q.front().position;
while(!heap.empty() && heap.top().position < start_pos+WINDOW_SIZE) {
addTopOfHeapToWindow(heap, q, token_positions, token_pos);
}
D(cout << endl << "----" << endl);
uint16_t prev_pos = MAX_UINT_16;
uint16_t num_match = 0;
uint16_t displacement = 0;
for(size_t token_id=0; token_id<token_positions.size(); token_id++) {
// If a token appeared within the window, we would have recorded its position
if(token_pos[token_id] != MAX_UINT_16) {
num_match++;
if(prev_pos == MAX_UINT_16) prev_pos = token_pos[token_id];
else {
// Calculate the distance between the tokens within the window
// Ideally, this should be (NUM_TOKENS - 1) when all the tokens are adjacent to each other
D(cout << "prev_pos: " << prev_pos << " , curr_pos: " << token_pos[token_id] << endl);
displacement += abs(token_pos[token_id]-prev_pos);
prev_pos = token_pos[token_id];
}
}
}
D(cout << endl << "!!!displacement: " << displacement << " | num_match: " << num_match << endl);
// Track the best `displacement` and `num_match` seen so far across all the windows
if(num_match >= max_match) {
max_match = num_match;
if(displacement != 0 && displacement < min_displacement) {
min_displacement = displacement;
}
}
// As we slide the window, drop the first token of the window from the computation
token_pos[q.front().token_id] = 0;
q.pop();
} while(!heap.empty());
return MatchScore{max_match, min_displacement};
}
};

View File

@ -1,121 +0,0 @@
#pragma once
#include <stdint.h>
#include <vector>
#include <queue>
#include <stdlib.h>
#include <limits>
#ifdef DEBUG
#define D(x) x
#else
#define D(x)
#endif
struct TokenPosition {
uint8_t token_id; // token identifier
uint16_t position; // token's position in the text
uint16_t position_index; // index of the position in the vector
bool operator() (const TokenPosition& a, const TokenPosition& b) {
return a.position > b.position;
}
};
struct MatchScore {
uint16_t words_present;
uint16_t distance;
};
#define addTopOfHeapToWindow(heap,q,token_positions,token_pos) {\
TokenPosition top = heap.top();\
heap.pop();\
q.push(top);\
token_pos[top.token_id] = top.position; \
top.position_index++;\
/* Must refill the heap - push the next position of the same token */\
if(top.position_index < token_positions[top.token_id].size()) {\
heap.push(TokenPosition{top.token_id, token_positions[top.token_id][top.position_index], top.position_index});\
}\
}
/*
* Given *sorted positions* of each target token in a *single* document, generates a score that indicates:
* a) How many tokens are present in the document
* b) The proximity between the tokens in the document
*
* We use a priority queue to read the position vectors in a sorted manner, slide a window of a given size, and
* compute the max_match and min_displacement of target tokens across the windows.
*/
MatchScore match_score(uint32_t doc_id, std::vector<std::vector<uint16_t>> &token_positions) {
const size_t WINDOW_SIZE = 20;
const size_t MAX_TOKENS_IN_A_QUERY = 20;
const uint16_t MAX_UINT_16 = std::numeric_limits<uint16_t>::max();
std::priority_queue<TokenPosition, std::vector<TokenPosition>, TokenPosition> heap;
for(uint8_t token_id=0; token_id < token_positions.size(); token_id++) {
heap.push(TokenPosition{token_id, token_positions[token_id].front(), 0});
}
// heap now contains the first occurring position of each token in the given document
uint16_t max_match = 1;
uint16_t min_displacement = UINT16_MAX;
std::queue<TokenPosition> q;
uint16_t token_pos[MAX_TOKENS_IN_A_QUERY] = { };
std::fill_n(token_pos, MAX_TOKENS_IN_A_QUERY, MAX_UINT_16);
do {
if(q.empty()) {
addTopOfHeapToWindow(heap, q, token_positions, token_pos);
}
D(cout << "Loop till window fills..." << endl;)
// Fill the queue with tokens within a given window frame size of the start position
// At the same time, we also record the *last* occurrence of each token within the window
// For e.g. if `cat` appeared at positions 1,3 and 5, we will record `token_pos[cat] = 5`
const uint16_t start_pos = q.front().position;
while(!heap.empty() && heap.top().position < start_pos+WINDOW_SIZE) {
addTopOfHeapToWindow(heap, q, token_positions, token_pos);
}
D(cout << endl << "----" << endl);
uint16_t prev_pos = MAX_UINT_16;
uint16_t num_match = 0;
uint16_t displacement = 0;
for(size_t token_id=0; token_id<token_positions.size(); token_id++) {
// If a token appeared within the window, we would have recorded its position
if(token_pos[token_id] != MAX_UINT_16) {
num_match++;
if(prev_pos == MAX_UINT_16) prev_pos = token_pos[token_id];
else {
// Calculate the distance between the tokens within the window
// Ideally, this should be (NUM_TOKENS - 1) when all the tokens are adjacent to each other
D(cout << "prev_pos: " << prev_pos << " , curr_pos: " << token_pos[token_id] << endl);
displacement += abs(token_pos[token_id]-prev_pos);
prev_pos = token_pos[token_id];
}
}
}
D(cout << endl << "!!!displacement: " << displacement << " | num_match: " << num_match << endl);
// Track the best `displacement` and `num_match` seen so far across all the windows
if(num_match >= max_match) {
max_match = num_match;
if(displacement != 0 && displacement < min_displacement) {
min_displacement = displacement;
}
}
// As we slide the window, drop the first token of the window from the computation
token_pos[q.front().token_id] = 0;
q.pop();
} while(!heap.empty());
return MatchScore{max_match, min_displacement};
}

44
include/string_utils.h Normal file
View File

@ -0,0 +1,44 @@
#pragma once
#include <string>
struct StringUtils {
template<class ContainerT>
static void tokenize(const std::string &str, ContainerT &tokens,
const std::string &delimiters = " ", bool trimEmpty = false) {
std::string::size_type pos, lastPos = 0;
using value_type = typename ContainerT::value_type;
using size_type = typename ContainerT::size_type;
while (true) {
pos = str.find_first_of(delimiters, lastPos);
if (pos == std::string::npos) {
pos = str.length();
if (pos != lastPos || !trimEmpty)
tokens.push_back(value_type(str.data() + lastPos,
(size_type) pos - lastPos));
break;
}
else {
if (pos != lastPos || !trimEmpty)
tokens.push_back(value_type(str.data() + lastPos,
(size_type) pos - lastPos));
}
lastPos = pos + 1;
}
}
static std::string replace_all(std::string str, const std::string &from, const std::string &to) {
size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length(); // Handles case where 'to' is a substring of 'from'
}
return str;
}
};

View File

@ -5,10 +5,11 @@
#include <cstdio>
#include <algorithm>
/*
* A bounded max heap that remembers the top-K elements seen so far
*/
template <size_t MAX_SIZE=100>
struct Topster {
// A bounded max heap that remembers the top-K elements seen so far
uint64_t data[MAX_SIZE];
uint32_t smallest_index = 0;
uint32_t size = 0;

View File

@ -1,36 +0,0 @@
#pragma once
#include <string>
template < class ContainerT >
void tokenize(const std::string& str, ContainerT& tokens,
const std::string& delimiters = " ", bool trimEmpty = false)
{
std::string::size_type pos, lastPos = 0;
using value_type = typename ContainerT::value_type;
using size_type = typename ContainerT::size_type;
while(true)
{
pos = str.find_first_of(delimiters, lastPos);
if(pos == std::string::npos)
{
pos = str.length();
if(pos != lastPos || !trimEmpty)
tokens.push_back(value_type(str.data()+lastPos,
(size_type)pos-lastPos ));
break;
}
else
{
if(pos != lastPos || !trimEmpty)
tokens.push_back(value_type(str.data()+lastPos,
(size_type)pos-lastPos ));
}
lastPos = pos + 1;
}
}

View File

@ -1,225 +1,20 @@
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <chrono>
#include <vector>
#include <cstdlib>
#include <numeric>
#include <time.h>
#include <art.h>
#include <unordered_map>
#include "topster.h"
#include "intersection.h"
#include "matchscore.h"
#include "util.h"
#include "string_utils.h"
#include "crow_all.h"
#include "search_index.h"
using namespace std;
static int test_prefix_cb(void *data, const unsigned char *k, uint32_t k_len, void *val) {
cout << "#>>>>Key: ";
printf("%.*s", k_len, k);
cout << "LENGTH OF IDS: " << ((art_values*)val)->ids.getLength() << endl;
for(uint32_t i=0; i<((art_values*)val)->ids.getLength(); i++) {
cout << ", ID: " << ((art_values*)val)->ids.at(i) << endl;
}
return 0;
}
void benchmark_heap_array() {
srand (time(NULL));
vector<uint32_t> records;
for(uint32_t i=0; i<10000000; i++) {
records.push_back((const unsigned int &) rand());
}
vector<uint32_t> hits;
for(uint32_t i=0; i<records.size(); i++) {
if(i%10 == 0) {
hits.push_back(i);
}
}
auto begin = std::chrono::high_resolution_clock::now();
Topster<4000> heapArray;
for(uint32_t i=0; i<hits.size(); i++) {
heapArray.add(i, records[hits[i]]);
}
std::sort(std::begin(heapArray.data), std::end(heapArray.data));
long long int timeMillis = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - begin).count();
for(uint32_t i=0; i<heapArray.size; i++) {
cout << "Res: " << heapArray.data[i] << endl;
}
cout << "Time taken: " << timeMillis << endl;
}
void index_document(art_tree& t, uint32_t doc_id, vector<string> tokens, uint16_t score) {
unordered_map<string, vector<uint32_t>> token_to_offsets;
for(uint32_t i=0; i<tokens.size(); i++) {
auto token = tokens[i];
std::transform(token.begin(), token.end(), token.begin(), ::tolower);
token_to_offsets[token].push_back(i);
}
for(auto & kv: token_to_offsets) {
art_document document;
document.id = doc_id;
document.score = score;
document.offsets_len = (uint32_t) kv.second.size();
document.offsets = new uint32_t[kv.second.size()];
uint32_t num_hits = document.offsets_len;
art_leaf* leaf = (art_leaf *) art_search(&t, (const unsigned char *) kv.first.c_str(), (int) kv.first.length());
if(leaf != NULL) {
num_hits += leaf->token_count;
}
for(auto i=0; i<kv.second.size(); i++) {
document.offsets[i] = kv.second[i];
}
art_insert(&t, (const unsigned char *) kv.first.c_str(), (int) kv.first.length(), &document, num_hits);
delete document.offsets;
}
}
/*
1. Split q into tokens
2. For each token, look up ids using exact lookup
a. If a token has no result, try again with edit distance of 1, and then 2
3. Do a limited cartesian product of the word suggestions for each token to form possible corrected search phrases
(adapted from: http://stackoverflow.com/a/31169617/131050)
4. Intersect the lists to find docs that match each phrase
5. Sort the docs based on some ranking criteria
*/
void find_documents(art_tree & t, unordered_map<uint32_t, uint16_t>& docscores, string query, size_t max_results) {
vector<string> tokens;
tokenize(query, tokens, " ", true);
vector<vector<art_leaf*>> token_leaves;
for(string token: tokens) {
vector<art_leaf*> leaves;
int max_cost = 2;
art_iter_fuzzy_prefix(&t, (const unsigned char *) token.c_str(), (int) token.length(), max_cost, 10, leaves);
if(!leaves.empty()) {
for(auto i=0; i<leaves.size(); i++) {
//printf("%s - ", token.c_str());
//printf("%.*s", leaves[i]->key_len, leaves[i]->key);
//printf(" - max_cost: %d, - score: %d\n", max_cost, leaves[i]->token_count);
}
token_leaves.push_back(leaves);
}
}
Topster<100> topster;
size_t total_results = 0;
const size_t combination_limit = 10;
auto product = []( long long a, vector<art_leaf*>& b ) { return a*b.size(); };
long long int N = accumulate(token_leaves.begin(), token_leaves.end(), 1LL, product );
for(long long n=0; n<N && n<combination_limit; ++n) {
// every element in vector `query_suggestion` represents a token and its associated hits
vector<art_leaf*> query_suggestion(token_leaves.size());
// generate the next combination from `token_leaves` and store it in `query_suggestion`
ldiv_t q { n, 0 };
for( long long i=token_leaves.size()-1 ; 0<=i ; --i ) {
q = div(q.quot, token_leaves[i].size());
query_suggestion[i] = token_leaves[i][q.rem];
}
// sort ascending based on matched documents for each token to perform effective intersection
sort(query_suggestion.begin(), query_suggestion.end(), [](const art_leaf* left, const art_leaf* right) {
return left->values->ids.getLength() < right->values->ids.getLength();
});
// initialize results with the starting element (for further intersection)
uint32_t* result_ids = query_suggestion[0]->values->ids.uncompress();
size_t result_size = query_suggestion[0]->values->ids.getLength();
if(result_size == 0) continue;
// intersect the document ids for each token to find docs that contain all the tokens (stored in `result_ids`)
for(auto i=1; i < query_suggestion.size(); i++) {
uint32_t* out = new uint32_t[result_size];
uint32_t* curr = query_suggestion[i]->values->ids.uncompress();
result_size = Intersection::scalar(result_ids, result_size, curr, query_suggestion[i]->values->ids.getLength(), out);
delete result_ids;
delete curr;
result_ids = out;
}
//cout << "2result_size: " << result_size << endl;
// go through each matching document id and calculate match score
for(auto i=0; i<result_size; i++) {
uint32_t doc_id = result_ids[i];
std::vector<std::vector<uint16_t>> token_positions;
// for each token in the query, find the positions that it appears in this document
for (art_leaf *token_leaf : query_suggestion) {
vector<uint16_t> positions;
uint32_t doc_index = token_leaf->values->ids.indexOf(doc_id);
uint32_t offset_index = token_leaf->values->offset_index.at(doc_index);
uint32_t num_offsets = token_leaf->values->offsets.at(offset_index);
for (auto offset_count = 1; offset_count <= num_offsets; offset_count++) {
positions.push_back((uint16_t) token_leaf->values->offsets.at(offset_index + offset_count));
}
token_positions.push_back(positions);
}
MatchScore mscore = match_score(doc_id, token_positions);
const uint32_t cumulativeScore = ((uint32_t)(mscore.words_present * 16 + (20 - mscore.distance)) * 64000) + docscores[doc_id];
// cout << "result_ids[i]: " << result_ids[i] << " - mscore.distance: " << (int)mscore.distance << " - mscore.words_present: " << (int)mscore.words_present
// << " - docscores[doc_id]: " << (int)docscores[doc_id] << " - cumulativeScore: " << cumulativeScore << endl;
topster.add(doc_id, cumulativeScore);
}
total_results += result_size;
delete result_ids;
if(total_results >= max_results) break;
}
topster.sort();
//cout << "RESULTS: " << endl << endl;
for(uint32_t i=0; i<topster.size; i++) {
uint32_t id = topster.getKeyAt(i);
cout << "ID: " << id << endl;
}
//cin.get();
}
std::string ReplaceAll(std::string str, const std::string& from, const std::string& to) {
size_t start_pos = 0;
while((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length(); // Handles case where 'to' is a substring of 'from'
}
return str;
}
int main() {
art_tree t;
art_tree_init(&t);
SearchIndex *index = new SearchIndex();
unordered_map<uint32_t, uint16_t> docscores;
// std::ifstream infile("/Users/kishore/others/wreally/typesense/test/documents.txt");
//std::ifstream infile("/Users/kishore/others/wreally/typesense/test/documents.txt");
std::ifstream infile("/Users/kishore/Downloads/hnstories.tsv");
std::string line;
@ -227,63 +22,23 @@ int main() {
while (std::getline(infile, line)) {
vector<string> parts;
tokenize(line, parts, "\t", true);
line = ReplaceAll(line, "\"", "");
StringUtils::tokenize(line, parts, "\t", true);
line = StringUtils::replace_all(line, "\"", "");
vector<string> tokens;
tokenize(parts[0], tokens, " ", true);
StringUtils::tokenize(parts[0], tokens, " ", true);
if(parts.size() != 2) continue;
if(doc_id == 857622 || doc_id == 52838 || doc_id == 56961) {
cout << "Doc " << doc_id << ": " << line << endl;
}
//cout << "Doc " << doc_id << ": " << line << endl;
docscores[doc_id] = (uint16_t) stoi(parts[1]);
index_document(t, doc_id, tokens, stoi(parts[1]));
index->add(doc_id, tokens, stoi(parts[1]));
doc_id++;
}
cout << "FINISHED INDEXING!" << endl << flush;
/*const unsigned char *prefix = (const unsigned char *) "the";
size_t prefix_len = strlen((const char *) prefix);
std::vector<art_leaf*> results;
auto begin = std::chrono::high_resolution_clock::now();
art_iter_fuzzy_prefix(&t, prefix, prefix_len, 0, 2, results);
index->search("thei rserch", 100);
long long int timeMillis = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::now() - begin).count();
art_iter_prefix(&t, prefix, strlen((const char *) prefix), test_prefix_cb, NULL);
art_iter(&t, test_prefix_cb, NULL);
cout << "Time taken: " << timeMillis << "us" << endl;
for(auto leaf: results) {
std::cout << ">>>>/Key: " << leaf->key << " - score: " << leaf->score << std::endl;
for(uint32_t i=0; i<leaf->values->ids.getLength(); i++) {
std::cout << ", ID: " << leaf->values->ids.at(i) << std::endl;
}
std::cout << ", Value: " << leaf->values->ids.at(0) << std::endl;
}*/
auto begin = std::chrono::high_resolution_clock::now();
find_documents(t, docscores, "thei rserch", 10);
long long int timeMillis = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::now() - begin).count();
// string token = "nternet";
// vector<art_leaf*> leaves;
//
// art_iter_fuzzy_prefix(&t, (const unsigned char *) token.c_str(), (int) token.length(), 1, 10, leaves);
// for(auto leaf: leaves) {
// printf("Word: %.*s", leaf->key_len, leaf->key);
// cout << " - score: " << leaf->token_count << endl;
// }
cout << "Time taken: " << timeMillis << "us" << endl;
art_tree_destroy(&t);
delete index;
return 0;
}

159
src/search_index.cpp Normal file
View File

@ -0,0 +1,159 @@
#include "search_index.h"
#include <iostream>
#include <numeric>
#include <topster.h>
#include <intersection.h>
#include <match_score.h>
#include <string_utils.h>
SearchIndex::SearchIndex() {
art_tree_init(&t);
}
SearchIndex::~SearchIndex() {
art_tree_destroy(&t);
}
void SearchIndex::add(uint32_t doc_id, std::vector<std::string> tokens, uint16_t score) {
std::unordered_map<std::string, std::vector<uint32_t>> token_to_offsets;
for(uint32_t i=0; i<tokens.size(); i++) {
auto token = tokens[i];
std::transform(token.begin(), token.end(), token.begin(), ::tolower);
token_to_offsets[token].push_back(i);
}
for(auto & kv: token_to_offsets) {
art_document document;
document.id = doc_id;
document.score = score;
document.offsets_len = (uint32_t) kv.second.size();
document.offsets = new uint32_t[kv.second.size()];
uint32_t num_hits = document.offsets_len;
art_leaf* leaf = (art_leaf *) art_search(&t, (const unsigned char *) kv.first.c_str(), (int) kv.first.length());
if(leaf != NULL) {
num_hits += leaf->token_count;
}
for(auto i=0; i<kv.second.size(); i++) {
document.offsets[i] = kv.second[i];
}
art_insert(&t, (const unsigned char *) kv.first.c_str(), (int) kv.first.length(), &document, num_hits);
delete document.offsets;
}
doc_scores[doc_id] = score;
}
/*
1. Split q into tokens
2. For each token, look up ids using exact lookup
a. If a token has no result, try again with edit distance of 1, and then 2
3. Do a limited cartesian product of the word suggestions for each token to form possible corrected search phrases
(adapted from: http://stackoverflow.com/a/31169617/131050)
4. Intersect the lists to find docs that match each phrase
5. Sort the docs based on some ranking criteria
*/
void SearchIndex::search(std::string query, size_t max_results) {
std::vector<std::string> tokens;
StringUtils::tokenize(query, tokens, " ", true);
std::vector<std::vector<art_leaf*>> token_leaves;
for(std::string token: tokens) {
std::vector<art_leaf*> leaves;
int max_cost = 2;
art_iter_fuzzy_prefix(&t, (const unsigned char *) token.c_str(), (int) token.length(), max_cost, 10, leaves);
if(!leaves.empty()) {
for(auto i=0; i<leaves.size(); i++) {
//printf("%s - ", token.c_str());
//printf("%.*s", leaves[i]->key_len, leaves[i]->key);
//printf(" - max_cost: %d, - score: %d\n", max_cost, leaves[i]->token_count);
}
token_leaves.push_back(leaves);
}
}
Topster<100> topster;
size_t total_results = 0;
const size_t combination_limit = 10;
auto product = []( long long a, std::vector<art_leaf*>& b ) { return a*b.size(); };
long long int N = std::accumulate(token_leaves.begin(), token_leaves.end(), 1LL, product );
for(long long n=0; n<N && n<combination_limit; ++n) {
// every element in vector `query_suggestion` represents a token and its associated hits
std::vector<art_leaf*> query_suggestion(token_leaves.size());
// generate the next combination from `token_leaves` and store it in `query_suggestion`
ldiv_t q { n, 0 };
for(long long i=token_leaves.size()-1 ; 0<=i ; --i ) {
q = ldiv(q.quot, token_leaves[i].size());
query_suggestion[i] = token_leaves[i][q.rem];
}
// sort ascending based on matched documents for each token to perform effective intersection
sort(query_suggestion.begin(), query_suggestion.end(), [](const art_leaf* left, const art_leaf* right) {
return left->values->ids.getLength() < right->values->ids.getLength();
});
// initialize results with the starting element (for further intersection)
uint32_t* result_ids = query_suggestion[0]->values->ids.uncompress();
size_t result_size = query_suggestion[0]->values->ids.getLength();
if(result_size == 0) continue;
// intersect the document ids for each token to find docs that contain all the tokens (stored in `result_ids`)
for(auto i=1; i < query_suggestion.size(); i++) {
uint32_t* out = new uint32_t[result_size];
uint32_t* curr = query_suggestion[i]->values->ids.uncompress();
result_size = Intersection::scalar(result_ids, result_size, curr, query_suggestion[i]->values->ids.getLength(), out);
delete result_ids;
delete curr;
result_ids = out;
}
//cout << "2result_size: " << result_size << endl;
// go through each matching document id and calculate match score
for(auto i=0; i<result_size; i++) {
uint32_t doc_id = result_ids[i];
std::vector<std::vector<uint16_t>> token_positions;
// for each token in the query, find the positions that it appears in this document
for (art_leaf *token_leaf : query_suggestion) {
std::vector<uint16_t> positions;
uint32_t doc_index = token_leaf->values->ids.indexOf(doc_id);
uint32_t offset_index = token_leaf->values->offset_index.at(doc_index);
uint32_t num_offsets = token_leaf->values->offsets.at(offset_index);
for (auto offset_count = 1; offset_count <= num_offsets; offset_count++) {
positions.push_back((uint16_t) token_leaf->values->offsets.at(offset_index + offset_count));
}
token_positions.push_back(positions);
}
MatchScore mscore = MatchScore::match_score(doc_id, token_positions);
const uint32_t cumulativeScore = ((uint32_t)(mscore.words_present * 16 + (20 - mscore.distance)) * 64000) + doc_scores[doc_id];
// cout << "result_ids[i]: " << result_ids[i] << " - mscore.distance: " << (int)mscore.distance << " - mscore.words_present: " << (int)mscore.words_present
// << " - docscores[doc_id]: " << (int)docscores[doc_id] << " - cumulativeScore: " << cumulativeScore << endl;
topster.add(doc_id, cumulativeScore);
}
total_results += result_size;
delete result_ids;
if(total_results >= max_results) break;
}
topster.sort();
//cout << "RESULTS: " << endl << endl;
for(uint32_t i=0; i<topster.size; i++) {
uint32_t id = topster.getKeyAt(i);
std::cout << "ID: " << id << std::endl;
}
}

18
src/search_index.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include <string>
#include <vector>
#include <art.h>
#include <unordered_map>
class SearchIndex {
private:
art_tree t;
std::unordered_map<uint32_t, uint16_t> doc_scores;
public:
SearchIndex();
~SearchIndex();
void add(uint32_t doc_id, std::vector<std::string> tokens, uint16_t score);
void search(std::string query, size_t max_results);
};