Basic distinct test is passing.

This commit is contained in:
kishorenc 2020-06-06 15:02:50 +05:30
parent 8f458640fd
commit b97c37215a
2 changed files with 119 additions and 49 deletions

View File

@ -7,12 +7,12 @@
#include <sparsepp.h>
struct KV {
uint8_t field_id;
uint16_t query_index;
uint16_t array_index;
uint64_t key;
uint64_t distinct_key;
uint64_t match_score;
uint8_t field_id{};
uint16_t query_index{};
uint16_t array_index{};
uint64_t key{};
uint64_t distinct_key{};
uint64_t match_score{};
int64_t scores[3]{}; // match score + 2 custom attributes
KV(uint8_t fieldId, uint16_t queryIndex, uint64_t key, uint64_t distinct_key,
@ -24,7 +24,7 @@ struct KV {
this->scores[2] = scores[2];
}
KV() {}
KV() = default;
};
/*
@ -37,9 +37,9 @@ struct Topster {
KV *data;
KV** kvs;
// For distinct, stores the min heap kv of each group_kv_map topster value
spp::sparse_hash_map<uint64_t, KV*> kv_map;
KV* group_min_kv;
spp::sparse_hash_map<uint64_t, Topster*> group_kv_map;
size_t distinct;
@ -61,14 +61,11 @@ struct Topster {
data[i].match_score = 0;
kvs[i] = &data[i];
}
group_min_kv = new KV();
}
~Topster() {
delete[] data;
delete[] kvs;
delete group_min_kv;
for(auto& kv: group_kv_map) {
delete kv.second;
}
@ -84,22 +81,12 @@ struct Topster {
(*b)->array_index = a_index;
}
static inline void copyMe(KV* a, KV* b) {
size_t b_index = b->array_index;
*b = *a;
b->array_index = b_index;
}
bool add(KV* kv) {
//LOG(INFO) << "kv_map size: " << kv_map.size() << " -- kvs[0]: " << kvs[0]->match_score;
/*for(auto kv: kv_map) {
LOG(INFO) << "kv key: " << kv.first << " => " << kv.second->match_score;
}*/
/*if(kv->key == 5) {
LOG(INFO) << "Key is 5";
}*/
bool less_than_min_heap = (size >= MAX_SIZE) && is_smaller_equal(kv, kvs[0]);
size_t heap_op_index = 0;
@ -115,45 +102,61 @@ struct Topster {
bool is_duplicate_key = (found_it != group_kv_map.end());
if(!is_duplicate_key && less_than_min_heap) {
// for distinct, if a non duplicate kv is < than min heap we also ignore
// for distinct, if a non duplicate kv is < than min heap we ignore
return false;
}
if(is_duplicate_key) {
// if min heap (group_topster.kvs[0]) changes, we have to update kvs and sift down
// if min heap (group_topster.kvs[0]) changes, we have to update kvs and sift
Topster* group_topster = found_it->second;
uint16_t old_min_heap_array_index = group_min_kv->array_index;
KV old_min_heap_kv = *kv_map[kv->distinct_key];
bool added = group_topster->add(kv);
if(!added) {
return false;
}
// if added, guaranteed to be larger than old_min_heap_ele
copyMe(kv, group_min_kv);
heap_op_index = old_min_heap_array_index;
} else {
// create fresh topster for this distinct group key since it does not exist
// if new kv score is greater than previous min heap score we sift dowm, otherwise sift up
SIFT_DOWN = is_greater_kv(kv, &old_min_heap_kv);
// new kv is different from old_min_heap_kv so we have to sift heap
heap_op_index = old_min_heap_kv.array_index;
// erase current min heap key from kv_map
kv_map.erase(old_min_heap_kv.distinct_key);
// kv will be copied into the pointer at heap_op_index
kv_map.emplace(kv->distinct_key, kvs[heap_op_index]);
} else {
// kv is guaranteed to be > current min heap: kvs[0]
// create fresh topster for this distinct group key since it does not exist
Topster* group_topster = new Topster(distinct, 0);
group_topster->add(kv);
copyMe(kv, group_min_kv);
if(size < MAX_SIZE) {
// we just copy to end of array
heap_op_index = size;
size++;
} else {
// kv is guaranteed to be > current min heap (group_topster.kvs[0])
// so we have to replace min heap element (kvs[0])
heap_op_index = 0;
// remove current min heap group key from map
delete group_kv_map[kvs[heap_op_index]->distinct_key];
group_kv_map.erase(kvs[heap_op_index]->distinct_key);
}
// add new group key to map
group_kv_map.emplace(kv->distinct_key, group_topster);
// find heap operation index for updating kvs
if(size < MAX_SIZE) {
// there is enough space in heap we just copy to end
SIFT_DOWN = false;
heap_op_index = size;
size++;
} else {
SIFT_DOWN = true;
// max size is reached so we are forced to replace current min heap element (kvs[0])
heap_op_index = 0;
// remove current min heap group key from maps
delete group_kv_map[kvs[heap_op_index]->distinct_key];
group_kv_map.erase(kvs[heap_op_index]->distinct_key);
kv_map.erase(kvs[heap_op_index]->distinct_key);
}
// kv will be copied into the pointer at heap_op_index
kv_map.emplace(kv->distinct_key, kvs[heap_op_index]);
}
} else { // not distinct
@ -184,11 +187,10 @@ struct Topster {
heap_op_index = existing_kv->array_index;
kv_map.erase(kvs[heap_op_index]->key);
// kv will be swapped into heap_op_index
// kv will be copied into the pointer at heap_op_index
kv_map.emplace(kv->key, kvs[heap_op_index]);
} else { // not duplicate
if(size < MAX_SIZE) {
// we just copy to end of array
SIFT_DOWN = false;
@ -202,13 +204,14 @@ struct Topster {
kv_map.erase(kvs[heap_op_index]->key);
}
// kv will be swapped into heap_op_index pointer
// kv will be copied into the pointer at heap_op_index
kv_map.emplace(kv->key, kvs[heap_op_index]);
}
}
// we have to replace the existing element in the heap and sift down
copyMe(kv, kvs[heap_op_index]);
kv->array_index = heap_op_index;
*kvs[heap_op_index] = *kv;
// sift up/down to maintain heap property
@ -262,6 +265,9 @@ struct Topster {
// topster must be sorted before iterated upon to remove dead array entries
void sort() {
std::stable_sort(kvs, kvs+size, is_greater_kv);
for(auto &group_topster: group_kv_map) {
group_topster.second->sort();
}
}
void clear(){
@ -272,6 +278,10 @@ struct Topster {
return kvs[index]->key;
}
uint64_t getDistinctKeyAt(uint32_t index) {
return kvs[index]->distinct_key;
}
KV* getKV(uint32_t index) {
return kvs[index];
}

View File

@ -99,4 +99,64 @@ TEST(TopsterTest, MaxFloatValues) {
for(uint32_t i = 0; i < topster.size; i++) {
EXPECT_EQ(ids[i], topster.getKeyAt(i));
}
}
TEST(TopsterTest, DistinctIntValues) {
Topster dist_topster(5, 2);
struct {
uint8_t field_id;
uint16_t query_index;
uint64_t distinct_key;
uint64_t match_score;
int64_t primary_attr;
int64_t secondary_attr;
} data[14] = {
{1, 0, 1, 11, 20, 30},
{1, 0, 1, 12, 20, 32},
{1, 0, 2, 4, 20, 30},
{1, 2, 3, 7, 20, 30},
{1, 0, 4, 14, 20, 30},
{1, 1, 5, 9, 20, 30},
{1, 1, 5, 10, 20, 32},
{1, 1, 5, 9, 20, 30},
{1, 0, 6, 6, 20, 30},
{1, 2, 7, 6, 22, 30},
{1, 2, 7, 6, 22, 30},
{1, 1, 8, 9, 20, 30},
{1, 0, 9, 8, 20, 30},
{1, 3, 10, 5, 20, 30},
};
for(int i = 0; i < 14; i++) {
int64_t scores[3];
scores[0] = int64_t(data[i].match_score);
scores[1] = data[i].primary_attr;
scores[2] = data[i].secondary_attr;
KV kv(data[i].field_id, data[i].query_index, i+100, data[i].distinct_key, data[i].match_score, scores);
dist_topster.add(&kv);
}
dist_topster.sort();
std::vector<uint64_t> distinct_ids = {4, 1, 5, 8, 9};
for(uint32_t i = 0; i < dist_topster.size; i++) {
EXPECT_EQ(distinct_ids[i], dist_topster.getDistinctKeyAt(i));
if(distinct_ids[i] == 1) {
EXPECT_EQ(12, (int) dist_topster.getKV(i)->match_score);
EXPECT_EQ(2, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->size);
EXPECT_EQ(12, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->getKV(0)->match_score);
EXPECT_EQ(11, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->getKV(1)->match_score);
}
if(distinct_ids[i] == 5) {
EXPECT_EQ(10, (int) dist_topster.getKV(i)->match_score);
EXPECT_EQ(2, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->size);
EXPECT_EQ(10, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->getKV(0)->match_score);
EXPECT_EQ(9, dist_topster.group_kv_map[dist_topster.getDistinctKeyAt(i)]->getKV(1)->match_score);
}
}
}