mirror of
https://github.com/typesense/typesense.git
synced 2025-05-23 23:30:42 +08:00
Merge pull request #1083 from ozanarmagan/v0.25-join
Improve HybridSearchWithExplicitVector test
This commit is contained in:
commit
6692e87d73
@ -679,42 +679,73 @@ TEST_F(CollectionVectorTest, VectorWithNullValue) {
|
||||
}
|
||||
|
||||
TEST_F(CollectionVectorTest, HybridSearchWithExplicitVector) {
|
||||
nlohmann::json schema = R"({
|
||||
"name": "coll1",
|
||||
"fields": [
|
||||
{"name": "name", "type": "string"},
|
||||
{"name": "vec", "type": "float[]", "embed":{"from": ["name"], "model_config": {"model_name": "ts/e5-small"}}}
|
||||
]
|
||||
})"_json;
|
||||
|
||||
nlohmann::json schema = R"({
|
||||
"name": "objects",
|
||||
"fields": [
|
||||
{"name": "name", "type": "string"},
|
||||
{"name": "embedding", "type":"float[]", "embed":{"from": ["name"], "model_config": {"model_name": "ts/e5-small"}}}
|
||||
]
|
||||
})"_json;
|
||||
|
||||
TextEmbedderManager::set_model_dir("/tmp/typesense_test/models");
|
||||
|
||||
Collection* coll1 = collectionManager.create_collection(schema).get();
|
||||
auto op = collectionManager.create_collection(schema);
|
||||
ASSERT_TRUE(op.ok());
|
||||
Collection* coll = op.get();
|
||||
nlohmann::json object;
|
||||
object["name"] = "butter";
|
||||
auto add_op = coll->add(object.dump());
|
||||
ASSERT_TRUE(add_op.ok());
|
||||
|
||||
nlohmann::json doc;
|
||||
object["name"] = "butterball";
|
||||
add_op = coll->add(object.dump());
|
||||
ASSERT_TRUE(add_op.ok());
|
||||
|
||||
doc["name"] = "john doe";
|
||||
ASSERT_TRUE(coll1->add(doc.dump()).ok());
|
||||
object["name"] = "butterfly";
|
||||
add_op = coll->add(object.dump());
|
||||
ASSERT_TRUE(add_op.ok());
|
||||
|
||||
std::string dummy_vec_string = "[0.9";
|
||||
for (int i = 0; i < 382; i++) {
|
||||
dummy_vec_string += ", 0.9";
|
||||
nlohmann::json model_config = R"({
|
||||
"model_name": "ts/e5-small"
|
||||
})"_json;
|
||||
|
||||
auto query_embedding = TextEmbedderManager::get_instance().get_text_embedder(model_config).get()->Embed("butter");
|
||||
|
||||
std::string vec_string = "[";
|
||||
for(size_t i = 0; i < query_embedding.embedding.size(); i++) {
|
||||
vec_string += std::to_string(query_embedding.embedding[i]);
|
||||
if(i != query_embedding.embedding.size() - 1) {
|
||||
vec_string += ",";
|
||||
}
|
||||
}
|
||||
dummy_vec_string += ", 0.9]";
|
||||
|
||||
auto results_op = coll1->search("john", {"name"}, "", {}, {}, {0}, 20, 1, FREQUENCY, {true}, Index::DROP_TOKENS_THRESHOLD,
|
||||
vec_string += "]";
|
||||
auto search_res_op = coll->search("butter", {"name"}, "", {}, {}, {0}, 20, 1, FREQUENCY, {true}, Index::DROP_TOKENS_THRESHOLD,
|
||||
spp::sparse_hash_set<std::string>(),
|
||||
spp::sparse_hash_set<std::string>(), 10, "", 30, 5,
|
||||
"", 10, {}, {}, {}, 0,
|
||||
"<mark>", "</mark>", {}, 1000, true, false, true, "", false, 6000 * 1000, 4, 7,
|
||||
fallback,
|
||||
4, {off}, 32767, 32767, 2,
|
||||
false, true, "vec:(" + dummy_vec_string +")");
|
||||
ASSERT_EQ(true, results_op.ok());
|
||||
ASSERT_EQ(1, results_op.get()["found"].get<size_t>());
|
||||
ASSERT_EQ(1, results_op.get()["hits"].size());
|
||||
false, true, "embedding:(" + vec_string + ")");
|
||||
|
||||
ASSERT_TRUE(search_res_op.ok());
|
||||
auto search_res = search_res_op.get();
|
||||
ASSERT_EQ(3, search_res["found"].get<size_t>());
|
||||
ASSERT_EQ(3, search_res["hits"].size());
|
||||
// Hybrid search with rank fusion order:
|
||||
// 1. butter (1/1 * 0.7) + (1/1 * 0.3) = 1
|
||||
// 2. butterfly (1/2 * 0.7) + (1/3 * 0.3) = 0.45
|
||||
// 3. butterball (1/3 * 0.7) + (1/2 * 0.3) = 0.383
|
||||
ASSERT_EQ("butter", search_res["hits"][0]["document"]["name"].get<std::string>());
|
||||
ASSERT_EQ("butterfly", search_res["hits"][1]["document"]["name"].get<std::string>());
|
||||
ASSERT_EQ("butterball", search_res["hits"][2]["document"]["name"].get<std::string>());
|
||||
|
||||
ASSERT_FLOAT_EQ((1.0/1.0 * 0.7) + (1.0/1.0 * 0.3), search_res["hits"][0]["hybrid_search_info"]["rank_fusion_score"].get<float>());
|
||||
ASSERT_FLOAT_EQ((1.0/2.0 * 0.7) + (1.0/3.0 * 0.3), search_res["hits"][1]["hybrid_search_info"]["rank_fusion_score"].get<float>());
|
||||
ASSERT_FLOAT_EQ((1.0/3.0 * 0.7) + (1.0/2.0 * 0.3), search_res["hits"][2]["hybrid_search_info"]["rank_fusion_score"].get<float>());
|
||||
}
|
||||
|
||||
|
||||
TEST_F(CollectionVectorTest, HybridSearchOnlyVectorMatches) {
|
||||
nlohmann::json schema = R"({
|
||||
"name": "coll1",
|
||||
|
Loading…
x
Reference in New Issue
Block a user