Merge branch 'v0.25-join'

This commit is contained in:
Kishore Nallan 2023-08-06 06:53:56 +05:30
commit 12881eeb9c
8 changed files with 188 additions and 27 deletions

View File

@ -1,5 +1,6 @@
name: tests
#on: workflow_dispatch
on: [push, pull_request]
# Cancel previous running if a new push is made
@ -20,31 +21,45 @@ jobs:
run: |
sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install -y g++-10 make git zlib1g-dev m4
# Define the compiler
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 30
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 30
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++
- name: Set up Bazel
uses: bazelbuild/setup-bazelisk@v2
- name: Restore bazel cache
uses: actions/cache@v3
- name: Download bazel cache
uses: dawidd6/action-download-artifact@v2
with:
path: |
~/.cache/bazel
# Source: https://github.com/actions/cache/blob/67b839edb68371cc5014f6cea11c9aa77238de78/examples.md#linux-2
key: ${{ runner.os }}-bazel-${{ hashFiles('.bazelversion', '.bazelrc', 'WORKSPACE', 'WORKSPACE.bazel', 'MODULE.bazel') }}
restore-keys: |
${{ runner.os }}-bazel-
name: bazel-cache
search_artifacts: true
workflow_conclusion: ""
if_no_artifact_found: warn
- name: Uncompress bazel cache
run: |
mkdir -p ~/.cache/bazel
tar_file="bazel-cache.tar.gz" && \
[ -f "$tar_file" ] && \
tar -xzvf "$tar_file" -C ~/.cache/bazel && \
rm bazel-cache.tar.gz
exit 0
- name: Build protobuf deps
run: |
bazel build @com_google_protobuf//:protobuf_headers
bazel build @com_google_protobuf//:protobuf_lite
bazel build @com_google_protobuf//:protobuf
bazel build @com_google_protobuf//:protoc
- name: Build Typesense
run: bazel build //:typesense-server
@ -52,8 +67,23 @@ jobs:
- name: Run tests
run: bazel test //:typesense-test
- name: Compress bazel cache
if: always()
run: |
tar -czvf bazel-cache.tar.gz -C ~/.cache/bazel .
- name: Save bazel cache
uses: actions/upload-artifact@v3
if: always()
with:
name: bazel-cache
path: bazel-cache.tar.gz
if-no-files-found: warn
retention-days: 10
# Source: https://github.com/actions/upload-artifact/issues/92#issuecomment-1080347032
- run: echo "BAZEL_BIN_FULL_PATH=$(readlink -f bazel-bin)" >> $GITHUB_ENV
- name: Set BAZEL_BIN_FULL_PATH
run: echo "BAZEL_BIN_FULL_PATH=$(readlink -f bazel-bin)" >> $GITHUB_ENV
- name: Save build artifacts
uses: actions/upload-artifact@v3
with:

View File

@ -30,9 +30,9 @@ cmake(
install = False,
cache_entries = {
'SPM_USE_BUILTIN_PROTOBUF': 'OFF',
'Protobuf_LIBRARY': '$INSTALLDIR/../../com_google_protobuf/libprotobuf.a',
'Protobuf_LITE_LIBRARY': '$INSTALLDIR/../../com_google_protobuf/libprotobuf-lite.a',
'Protobuf_PROTOC_EXECUTABLE': '$INSTALLDIR/../../com_google_protobuf/protoc',
'Protobuf_LIBRARY': '$$BUILD_TMPDIR$$/../../com_google_protobuf/libprotobuf.a',
'Protobuf_LITE_LIBRARY': '$$BUILD_TMPDIR$$/../../com_google_protobuf/libprotobuf-lite.a',
'Protobuf_PROTOC_EXECUTABLE': '$$BUILD_TMPDIR$$/../../com_google_protobuf/protoc',
'Protobuf_INCLUDE_DIR': '$EXT_BUILD_ROOT/external/com_google_protobuf/src',
'CMAKE_POLICY_DEFAULT_CMP0111':'OLD'
},
@ -44,7 +44,7 @@ cmake(
],
tags = ["no-sandbox"],
postfix_script= """
echo "Intstalling sentencepiece"
cp $BUILD_TMPDIR/src/libsentencepiece.a $INSTALLDIR/lib/libsentencepiece.a
"""
echo "Installing sentencepiece"
cp $BUILD_TMPDIR/src/libsentencepiece.a $INSTALLDIR/lib/libsentencepiece.a
"""
)

View File

@ -71,6 +71,6 @@ public:
static Option<bool> validate_embed_fields(const nlohmann::json& document,
const tsl::htrie_map<char, field>& embedding_fields,
const tsl::htrie_map<char, field> & search_schema,
const bool& error_if_field_not_found);
const bool& is_update);
};

View File

@ -852,7 +852,7 @@ bool field::flatten_obj(nlohmann::json& doc, nlohmann::json& value, bool has_arr
continue;
}
if(std::regex_match(flat_name, std::regex(flat_name))) {
if(std::regex_match(flat_name, std::regex(dynamic_field.name))) {
detected_type = dynamic_field.type;
found_dynamic_field = true;
break;

View File

@ -504,6 +504,7 @@ void Index::validate_and_preprocess(Index *index, std::vector<index_record>& ite
index_rec.index_failure(400, e.what());
}
}
if(generate_embeddings) {
batch_embed_fields(records_to_embed, embedding_fields, search_schema, remote_embedding_batch_size);
}
@ -6499,6 +6500,12 @@ void Index::batch_embed_fields(std::vector<index_record*>& records,
if(document == nullptr) {
continue;
}
if(document->contains(field.name) && !record->is_update) {
// embedding already exists (could be a restore from export)
continue;
}
std::string text = indexing_prefix;
const auto& embed_from = field.embed[fields::from].get<std::vector<std::string>>();
for(const auto& field_name : embed_from) {

View File

@ -654,7 +654,7 @@ Option<uint32_t> validator_t::validate_index_in_memory(nlohmann::json& document,
if(validate_embedding_fields) {
// validate embedding fields
auto validate_embed_op = validate_embed_fields(document, embedding_fields, search_schema, !is_update);
auto validate_embed_op = validate_embed_fields(document, embedding_fields, search_schema, is_update);
if(!validate_embed_op.ok()) {
return Option<>(validate_embed_op.code(), validate_embed_op.error());
}
@ -667,8 +667,26 @@ Option<uint32_t> validator_t::validate_index_in_memory(nlohmann::json& document,
Option<bool> validator_t::validate_embed_fields(const nlohmann::json& document,
const tsl::htrie_map<char, field>& embedding_fields,
const tsl::htrie_map<char, field> & search_schema,
const bool& error_if_field_not_found) {
const bool& is_update) {
for(const auto& field : embedding_fields) {
if(document.contains(field.name) && !is_update) {
const auto& field_vec = document[field.name];
if(!field_vec.is_array() || field_vec.empty() || !field_vec[0].is_number() ||
field_vec.size() != field.num_dim) {
return Option<bool>(400, "Field `" + field.name + "` contains an invalid embedding.");
}
auto it = field_vec.begin();
while(it != field_vec.end()) {
if(!it.value().is_number()) {
return Option<bool>(400, "Field `" + field.name + "` contains invalid float values.");
}
it++;
}
continue;
}
const auto& embed_from = field.embed[fields::from].get<std::vector<std::string>>();
// flag to check if all fields to embed from are optional and null
bool all_optional_and_null = true;
@ -679,7 +697,7 @@ Option<bool> validator_t::validate_embed_fields(const nlohmann::json& document,
return Option<bool>(400, "Field `" + field.name + "` has invalid fields to create embeddings from.");
}
if(doc_field_it == document.end()) {
if(error_if_field_not_found && !schema_field_it->optional) {
if(!is_update && !schema_field_it->optional) {
return Option<bool>(400, "Field `" + field_name + "` is needed to create embedding.");
} else {
continue;

View File

@ -2867,6 +2867,42 @@ TEST_F(CollectionNestedFieldsTest, FloatInsideNestedObject) {
ASSERT_TRUE(add_op.ok());
}
TEST_F(CollectionNestedFieldsTest, NestedFieldWithRegexName) {
nlohmann::json schema = R"({
"name": "coll1",
"enable_nested_fields": true,
"fields": [
{"name":"titles", "type":"object"},
{"name": "titles\\..*", "type":"string"},
{"name":"start_date", "type":"object"},
{"name":"start_date\\..*", "type":"int32", "facet":true, "optional":true}
]
})"_json;
auto op = collectionManager.create_collection(schema);
ASSERT_TRUE(op.ok());
Collection *coll1 = op.get();
auto doc1 = R"({
"titles": {
"en": "Foobar baz"
},
"start_date": {
"year": 2020,
"month": 2,
"day": 3
}
})"_json;
auto add_op = coll1->add(doc1.dump(), CREATE);
ASSERT_TRUE(add_op.ok());
auto results = coll1->search("foobar", {"titles.en"}, "start_date.year: 2020", {}, {}, {2}, 10,
1, FREQUENCY, {true}).get();
ASSERT_EQ(1, results["found"].get<size_t>());
}
TEST_F(CollectionNestedFieldsTest, HighlightOnFlatFieldWithSnippeting) {
std::vector<field> fields = {field("title", field_types::STRING, false),
field("body", field_types::STRING, false)};

View File

@ -775,8 +775,8 @@ TEST_F(CollectionVectorTest, HybridSearchWithExplicitVector) {
ASSERT_EQ(2, search_res["found"].get<size_t>());
ASSERT_EQ(2, search_res["hits"].size());
ASSERT_FLOAT_EQ(0.04620, search_res["hits"][0]["vector_distance"].get<float>());
ASSERT_FLOAT_EQ(0.1213316321, search_res["hits"][1]["vector_distance"].get<float>());
ASSERT_NEAR(0.04620, search_res["hits"][0]["vector_distance"].get<float>(), 0.0001);
ASSERT_NEAR(0.12133, search_res["hits"][1]["vector_distance"].get<float>(), 0.0001);
// to pass k param
vec_query = "embedding:([], k: 1)";
@ -1031,4 +1031,74 @@ TEST_F(CollectionVectorTest, EmbedFromOptionalNullField) {
add_op = coll->add(doc.dump());
ASSERT_TRUE(add_op.ok());
}
}
TEST_F(CollectionVectorTest, SkipEmbeddingOpWhenValueExists) {
nlohmann::json schema = R"({
"name": "objects",
"fields": [
{"name": "name", "type": "string"},
{"name": "embedding", "type":"float[]", "embed":{"from": ["name"], "model_config": {"model_name": "ts/e5-small"}}}
]
})"_json;
TextEmbedderManager::set_model_dir("/tmp/typesense_test/models");
nlohmann::json model_config = R"({
"model_name": "ts/e5-small"
})"_json;
// will be roughly 0.1110895648598671,-0.11710234731435776,-0.5319093465805054, ...
auto op = collectionManager.create_collection(schema);
ASSERT_TRUE(op.ok());
Collection* coll = op.get();
// document with explicit embedding vector
nlohmann::json doc;
doc["name"] = "FOO";
std::vector<float> vec;
for(size_t i = 0; i < 384; i++) {
vec.push_back(0.345);
}
doc["embedding"] = vec;
auto add_op = coll->add(doc.dump());
ASSERT_TRUE(add_op.ok());
// get the vector back
auto res = coll->search("*", {}, "", {}, {}, {0}, 10, 1, FREQUENCY, {true},
Index::DROP_TOKENS_THRESHOLD).get();
// let's check the first few vectors
auto stored_vec = res["hits"][0]["document"]["embedding"];
ASSERT_NEAR(0.345, stored_vec[0], 0.01);
ASSERT_NEAR(0.345, stored_vec[1], 0.01);
ASSERT_NEAR(0.345, stored_vec[2], 0.01);
ASSERT_NEAR(0.345, stored_vec[3], 0.01);
ASSERT_NEAR(0.345, stored_vec[4], 0.01);
// what happens when vector contains invalid value, like string
doc["embedding"] = "foo"; //{0.11, 0.11};
add_op = coll->add(doc.dump());
ASSERT_FALSE(add_op.ok());
ASSERT_EQ("Field `embedding` contains an invalid embedding.", add_op.error());
// when dims don't match
doc["embedding"] = {0.11, 0.11};
add_op = coll->add(doc.dump());
ASSERT_FALSE(add_op.ok());
ASSERT_EQ("Field `embedding` contains an invalid embedding.", add_op.error());
// invalid array value
doc["embedding"].clear();
for(size_t i = 0; i < 384; i++) {
doc["embedding"].push_back(0.01);
}
doc["embedding"][5] = "foo";
add_op = coll->add(doc.dump());
ASSERT_FALSE(add_op.ok());
ASSERT_EQ("Field `embedding` contains invalid float values.", add_op.error());
}