timescaledb/tsl/test/expected/hypercore_cursor.out
Mats Kindahl e5e94960d0 Change parameter name to enable Hypercore TAM
Changing from using the `compress_using` parameter with a table access
method name to use the boolean parameter `hypercore_use_access_method`
instead to avoid having to provide a name when using the table access
method for compression.
2024-11-10 10:50:48 +01:00

383 lines
15 KiB
Plaintext

-- This file and its contents are licensed under the Timescale License.
-- Please see the included NOTICE for copyright information and
-- LICENSE-TIMESCALE for a copy of the license.
\ir include/setup_hypercore.sql
-- This file and its contents are licensed under the Timescale License.
-- Please see the included NOTICE for copyright information and
-- LICENSE-TIMESCALE for a copy of the license.
\set hypertable readings
\ir hypercore_helpers.sql
-- This file and its contents are licensed under the Timescale License.
-- Please see the included NOTICE for copyright information and
-- LICENSE-TIMESCALE for a copy of the license.
-- Function to run an explain analyze with and do replacements on the
-- emitted plan. This is intended to be used when the structure of the
-- plan is important, but not the specific chunks scanned nor the
-- number of heap fetches, rows, loops, etc.
create function explain_analyze_anonymize(text) returns setof text
language plpgsql as
$$
declare
ln text;
begin
for ln in
execute format('explain (analyze, costs off, summary off, timing off, decompress_cache_stats) %s', $1)
loop
if trim(both from ln) like 'Group Key:%' then
continue;
end if;
ln := regexp_replace(ln, 'Array Cache Hits: \d+', 'Array Cache Hits: N');
ln := regexp_replace(ln, 'Array Cache Misses: \d+', 'Array Cache Misses: N');
ln := regexp_replace(ln, 'Array Cache Evictions: \d+', 'Array Cache Evictions: N');
ln := regexp_replace(ln, 'Heap Fetches: \d+', 'Heap Fetches: N');
ln := regexp_replace(ln, 'Workers Launched: \d+', 'Workers Launched: N');
ln := regexp_replace(ln, 'actual rows=\d+ loops=\d+', 'actual rows=N loops=N');
ln := regexp_replace(ln, '_hyper_\d+_\d+_chunk', '_hyper_I_N_chunk', 1, 0);
return next ln;
end loop;
end;
$$;
create function explain_anonymize(text) returns setof text
language plpgsql as
$$
declare
ln text;
begin
for ln in
execute format('explain (costs off, summary off, timing off) %s', $1)
loop
ln := regexp_replace(ln, 'Array Cache Hits: \d+', 'Array Cache Hits: N');
ln := regexp_replace(ln, 'Array Cache Misses: \d+', 'Array Cache Misses: N');
ln := regexp_replace(ln, 'Array Cache Evictions: \d+', 'Array Cache Evictions: N');
ln := regexp_replace(ln, 'Heap Fetches: \d+', 'Heap Fetches: N');
ln := regexp_replace(ln, 'Workers Launched: \d+', 'Workers Launched: N');
ln := regexp_replace(ln, 'actual rows=\d+ loops=\d+', 'actual rows=N loops=N');
ln := regexp_replace(ln, '_hyper_\d+_\d+_chunk', '_hyper_I_N_chunk', 1, 0);
return next ln;
end loop;
end;
$$;
create table :hypertable(
metric_id serial,
created_at timestamptz not null unique,
location_id smallint, --segmentby attribute with index
owner_id bigint, --segmentby attribute without index
device_id bigint, --non-segmentby attribute
temp float8,
humidity float4
);
create index hypertable_location_id_idx on :hypertable (location_id);
create index hypertable_device_id_idx on :hypertable (device_id);
select create_hypertable(:'hypertable', by_range('created_at'));
create_hypertable
-------------------
(1,t)
(1 row)
-- Disable incremental sort to make tests stable
set enable_incremental_sort = false;
select setseed(1);
setseed
---------
(1 row)
-- Insert rows into the tables.
--
-- The timestamps for the original rows will have timestamps every 10
-- seconds. Any other timestamps are inserted as part of the test.
insert into :hypertable (created_at, location_id, device_id, owner_id, temp, humidity)
select t, ceil(random()*10), ceil(random()*30), ceil(random() * 5), random()*40, random()*100
from generate_series('2022-06-01'::timestamptz, '2022-07-01', '5m') t;
alter table :hypertable set (
timescaledb.compress,
timescaledb.compress_orderby = 'created_at',
timescaledb.compress_segmentby = 'location_id, owner_id'
);
-- Get some test chunks as global variables (first and last chunk here)
select format('%I.%I', chunk_schema, chunk_name)::regclass as chunk1
from timescaledb_information.chunks
where format('%I.%I', hypertable_schema, hypertable_name)::regclass = :'hypertable'::regclass
order by chunk1 asc
limit 1 \gset
select format('%I.%I', chunk_schema, chunk_name)::regclass as chunk2
from timescaledb_information.chunks
where format('%I.%I', hypertable_schema, hypertable_name)::regclass = :'hypertable'::regclass
order by chunk2 asc
limit 1 offset 1 \gset
-- To generate plans consistently.
set max_parallel_workers_per_gather to 0;
-- Create a function that uses a cursor to scan the the Hypercore
-- table. This should work equivalent to a query on the same table.
create function location_humidity_for(
in p_owner integer,
out p_location integer,
out p_humidity float)
returns setof record as
$$
declare
location_record record;
location_cursor cursor for
select location_id,
avg(humidity) as avg_humidity
from readings
where owner_id = p_owner
group by location_id;
begin
open location_cursor;
loop
fetch next from location_cursor into location_record;
exit when not found;
p_location = location_record.location_id;
p_humidity = location_record.avg_humidity;
return next;
end loop;
close location_cursor;
end;
$$
language plpgsql;
select compress_chunk(show_chunks(:'hypertable'), hypercore_use_access_method => true);
compress_chunk
----------------------------------------
_timescaledb_internal._hyper_1_1_chunk
_timescaledb_internal._hyper_1_2_chunk
_timescaledb_internal._hyper_1_3_chunk
_timescaledb_internal._hyper_1_4_chunk
_timescaledb_internal._hyper_1_5_chunk
_timescaledb_internal._hyper_1_6_chunk
(6 rows)
-- Compare executing the function with a cursor with a query fetching
-- the same data directly from the hypertable.
select p_location, lhs.p_humidity, rhs.p_humidity
from (select * from location_humidity_for(1)) lhs
join (select location_id as p_location,
avg(humidity) as p_humidity
from :hypertable
where owner_id = 1
group by location_id) rhs
using (p_location)
where lhs.p_humidity != rhs.p_humidity
order by p_location;
p_location | p_humidity | p_humidity
------------+------------+------------
(0 rows)
-- Create a function that will use a cursor to iterate through a table
-- and update the humidity for a location using a cursor.
create function update_location_humidity(
in p_location integer,
in p_humidity float)
returns setof record as
$$
declare
location_record record;
location_cursor cursor for
select location_id, humidity from readings where location_id = p_location;
begin
open location_cursor;
loop
move next in location_cursor;
exit when not found;
update readings set humidity = p_humidity where current of location_cursor;
end loop;
close location_cursor;
end;
$$
language plpgsql;
set timescaledb.max_tuples_decompressed_per_dml_transaction to 0;
create table saved as select * from :hypertable;
-- These two should generate the same result
update saved set humidity = 100.0 where location_id = 10;
select update_location_humidity(10, 100.0);
update_location_humidity
--------------------------
(0 rows)
-- This should show no rows, but if there are differences we limit
-- this to 10 rows to not waste electrons.
--
-- Note that update of compressed tables through a cursor does not
-- work for all compressed tables right now because of the way the
-- local ExecModifyTable is implemented, so this will show rows.
select metric_id, lhs.humidity, rhs.humidity
from saved lhs full join :hypertable rhs using (metric_id)
where lhs.humidity != rhs.humidity
order by metric_id limit 10;
metric_id | humidity | humidity
-----------+----------+----------
15 | 100 | 96.6755
16 | 100 | 62.7184
23 | 100 | 1.22822
30 | 100 | 73.4355
31 | 100 | 84.7107
79 | 100 | 72.8738
82 | 100 | 60.9366
101 | 100 | 42.5581
111 | 100 | 93.1651
113 | 100 | 1.58061
(10 rows)
drop function location_humidity_for;
drop function update_location_humidity;
-- Test cursor going backwards
create table backward_cursor (time timestamptz, location_id bigint, temp float8);
select create_hypertable('backward_cursor', 'time', create_default_indexes=>false);
NOTICE: adding not-null constraint to column "time"
create_hypertable
------------------------------
(3,public,backward_cursor,t)
(1 row)
alter table backward_cursor set (timescaledb.compress, timescaledb.compress_segmentby='location_id', timescaledb.compress_orderby='time asc');
insert into backward_cursor values ('2024-01-01 01:00', 1, 1.0), ('2024-01-01 02:00', 1, 2.0), ('2024-01-01 03:00', 2, 3.0), ('2024-01-01 04:00', 2, 4.0);
select compress_chunk(ch, hypercore_use_access_method => true) from show_chunks('backward_cursor') ch;
compress_chunk
-----------------------------------------
_timescaledb_internal._hyper_3_13_chunk
(1 row)
insert into backward_cursor values ('2024-01-01 05:00', 3, 5.0), ('2024-01-01 06:00', 3, 6.0);
begin;
-- This needs to be a simple scan on top of the baserel, without a
-- materialization. For scan nodes that don't support backwards scans,
-- or where a sort or similar happens, the query is typically
-- materialized first, thus not really testing the TAMs ability to do
-- backwards scanning.
explain (costs off)
declare curs1 cursor for
select _timescaledb_debug.is_compressed_tid(ctid), * from backward_cursor;
QUERY PLAN
-------------------------------------------------------
Result
-> Custom Scan (ColumnarScan) on _hyper_3_13_chunk
(2 rows)
declare curs1 cursor for
select _timescaledb_debug.is_compressed_tid(ctid), * from backward_cursor;
-- Immediately fetching backward should return nothing
fetch backward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------+-------------+------
(0 rows)
-- Now read some values forward
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 01:00:00 2024 PST | 1 | 1
(1 row)
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 02:00:00 2024 PST | 1 | 2
(1 row)
-- The next fetch should move into a new segment with location_id=2
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 03:00:00 2024 PST | 2 | 3
(1 row)
-- Last compressed entry
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 04:00:00 2024 PST | 2 | 4
(1 row)
-- Now should move into non-compressed
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 05:00:00 2024 PST | 3 | 5
(1 row)
-- Last entry in non-compressed
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 06:00:00 2024 PST | 3 | 6
(1 row)
-- Should return nothing since at end
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------+-------------+------
(0 rows)
-- Now move backwards
fetch backward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 06:00:00 2024 PST | 3 | 6
(1 row)
-- Now backwards into the old segment
fetch backward 5 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 05:00:00 2024 PST | 3 | 5
t | Mon Jan 01 04:00:00 2024 PST | 2 | 4
t | Mon Jan 01 03:00:00 2024 PST | 2 | 3
t | Mon Jan 01 02:00:00 2024 PST | 1 | 2
t | Mon Jan 01 01:00:00 2024 PST | 1 | 1
(5 rows)
-- Next fetch should return nothing since at start
fetch backward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------+-------------+------
(0 rows)
-- Fetch first value again
fetch forward 1 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 01:00:00 2024 PST | 1 | 1
(1 row)
-- Jump to last value
fetch last from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 06:00:00 2024 PST | 3 | 6
(1 row)
-- Back to first
fetch first from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 01:00:00 2024 PST | 1 | 1
(1 row)
-- Get the values at position 2 and 5 from the start
fetch absolute 2 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 02:00:00 2024 PST | 1 | 2
(1 row)
fetch absolute 5 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
f | Mon Jan 01 05:00:00 2024 PST | 3 | 5
(1 row)
-- Get the value at position 3 from the end (which should be 4 from
-- the start)
fetch absolute -3 from curs1;
is_compressed_tid | time | location_id | temp
-------------------+------------------------------+-------------+------
t | Mon Jan 01 04:00:00 2024 PST | 2 | 4
(1 row)
commit;