timescaledb/tsl/test/expected/partialize_finalize.out
Erik Nordström c76a0cff68 Add parallel support for partialize_agg()
Make `partialize_agg()` support parallel query execution. To make this
work, the finalize node need combine the individual partials from each
parallel worker, but the final step that turns the resulting partial
into the finished aggregate should not happen. Thus, in the case of
distributed hypertables, each data node can run a parallel query to
compute a partial, and the access node can later combine and finalize
these partials into the final aggregate. Esssentially, there will be
one combine step (minus final) on each data node, and then another one
plus final on the access node.

To implement this, the finalize aggregate plan is simply modified to
elide the final step, and to reserialize the partial. It is only
possible to do this at the plan stage; if done at the path stage, the
PostgreSQL planner will hit assertions that assume that the node has
certain values (e.g., it doesn't expect combine Paths to skip the
final step).
2023-03-08 14:14:25 +01:00

911 lines
51 KiB
Plaintext

-- This file and its contents are licensed under the Timescale License.
-- Please see the included NOTICE for copyright information and
-- LICENSE-TIMESCALE for a copy of the license.
-- TEST1 count with integers
SHOW enable_partitionwise_aggregate;
enable_partitionwise_aggregate
--------------------------------
off
(1 row)
SET enable_partitionwise_aggregate = on;
create table foo (a integer, b integer, c integer);
insert into foo values( 1 , 10 , 20);
insert into foo values( 1 , 11 , 20);
insert into foo values( 1 , 12 , 20);
insert into foo values( 1 , 13 , 20);
insert into foo values( 1 , 14 , 20);
insert into foo values( 2 , 14 , 20);
insert into foo values( 2 , 15 , 20);
insert into foo values( 2 , 16 , 20);
insert into foo values( 3 , 16 , 20);
create or replace view v1(a , partial)
as
SELECT a, _timescaledb_internal.partialize_agg( count(b)) from foo group by a;
create table t1 as select * from v1;
select a, _timescaledb_internal.finalize_agg( 'count("any")', null, null, null, partial, cast('1' as int8) ) from t1
group by a order by a ;
a | finalize_agg
---+--------------
1 | 5
2 | 3
3 | 1
(3 rows)
insert into t1 select * from t1;
select a, _timescaledb_internal.finalize_agg( 'count("any")', null, null, null, partial, cast('1' as int8) ) from t1
group by a order by a ;
a | finalize_agg
---+--------------
1 | 10
2 | 6
3 | 2
(3 rows)
--TEST2 sum numeric and min on float--
drop table t1;
drop view v1;
drop table foo;
create table foo (a integer, b numeric , c float);
insert into foo values( 1 , 10 , 20);
insert into foo values( 1 , 20 , 19);
insert into foo values( 1 , 30 , 11.0);
insert into foo values( 1 , 40 , 200);
insert into foo values( 1 , 50 , -10);
insert into foo values( 2 , 10 , 20);
insert into foo values( 2 , 20 , 20);
insert into foo values( 2 , 30 , 20);
insert into foo values( 3 , 40 , 0);
create or replace view v1(a , partialb, partialminc)
as
SELECT a, _timescaledb_internal.partialize_agg( sum(b)) , _timescaledb_internal.partialize_agg( min(c)) from foo group by a;
create table t1 as select * from v1;
select a, _timescaledb_internal.finalize_agg( 'sum(numeric)', null, null, null, partialb, cast('1' as numeric) ) sumb, _timescaledb_internal.finalize_agg( 'min(double precision)', null, null, null, partialminc, cast('1' as float8) ) minc from t1 group by a order by a ;
a | sumb | minc
---+------+------
1 | 150 | -10
2 | 60 | 20
3 | 40 | 0
(3 rows)
insert into foo values( 3, 0, -1);
insert into foo values( 5, 40, 10);
insert into foo values( 5, 40, 0);
--note that rows for 3 get added all over again + new row
--sum aggfnoid 2114, min aggfnoid is 2136 oid numeric is 1700
insert into t1 select * from v1 where ( a = 3 ) or a = 5;
select a, _timescaledb_internal.finalize_agg( 'sum(numeric)', null, null, null, partialb, cast('1' as numeric) ) sumb, _timescaledb_internal.finalize_agg( 'min(double precision)', null, null, null, partialminc, cast('1' as float8) ) minc from t1 group by a order by a ;
a | sumb | minc
---+------+------
1 | 150 | -10
2 | 60 | 20
3 | 80 | -1
5 | 80 | 0
(4 rows)
SET enable_partitionwise_aggregate = off;
--TEST3 sum with expressions
drop table t1;
drop view v1;
drop table foo;
create table foo (a integer, b numeric , c float);
insert into foo values( 1 , 10 , 20);
insert into foo values( 1 , 20 , 19);
insert into foo values( 1 , 30 , 11.0);
insert into foo values( 1 , 40 , 200);
insert into foo values( 1 , 50 , -10);
insert into foo values( 2 , 10 , 20);
insert into foo values( 2 , 20 , 20);
insert into foo values( 2 , 30 , 20);
insert into foo values( 3 , 40 , 0);
insert into foo values(10, NULL, NULL);
insert into foo values(11, NULL, NULL);
insert into foo values(11, NULL, NULL);
insert into foo values(12, NULL, NULL);
create or replace view v1(a , b, partialb, partialminc)
as
SELECT a, b, _timescaledb_internal.partialize_agg( sum(b+c)) , _timescaledb_internal.partialize_agg( min(c)) from foo group by a, b ;
create table t1 as select * from v1;
insert into foo values( 3, 0, -1);
insert into foo values( 5, 40, 10);
insert into foo values( 5, 40, 0);
insert into foo values(12, 10, 20);
insert into t1 select * from v1 where ( a = 3 and b = 0 ) or a = 5 or (a = 12 and b = 10) ;
--results should match query: select a, sum(b+c), min(c) from foo group by a order by a;
--sum aggfnoid 2111 for float8, min aggfnoid is 2136 oid numeric is 1700
select a, _timescaledb_internal.finalize_agg( 'sum(double precision)', null, null, null, partialb, null::float8 ) sumcd, _timescaledb_internal.finalize_agg( 'min(double precision)', null, null, null, partialminc, cast('1' as float8) ) minc from t1 group by a order by a ;
a | sumcd | minc
----+-------+------
1 | 390 | -10
2 | 120 | 20
3 | 39 | -1
5 | 90 | 0
10 | |
11 | |
12 | 30 | 20
(7 rows)
insert into t1 select * from v1;
select a, _timescaledb_internal.finalize_agg( 'sum(double precision)', null, null, null, partialb, null::float8 ) sumcd, _timescaledb_internal.finalize_agg( 'min(double precision)', null, null, null, partialminc, cast('1' as float8) ) minc from t1 group by a order by a ;
a | sumcd | minc
----+-------+------
1 | 780 | -10
2 | 240 | 20
3 | 78 | -1
5 | 180 | 0
10 | |
11 | |
12 | 60 | 20
(7 rows)
-- TEST4 with collation (text), NULLS and timestamp --
drop table t1;
drop view v1;
drop table foo;
create table foo (a integer, b numeric , c text, d timestamptz, e bigint);
insert into foo values( 1 , 10 , 'hello', '2010-01-01 09:00:00-08', 10);
insert into foo values( 1 , 20 , 'abc', '2010-01-02 09:00:00-08', 20);
insert into foo values( 1 , 30 , 'abcd', '2010-01-03 09:00:00-08', 30);
insert into foo values( 1 , 40 , 'abcde', NULL, 40);
insert into foo values( 1 , 50 , NULL, '2010-01-01 09:00:00-08', 50);
--group with all values for c and d same
insert into foo values( 2 , 10 , 'hello', '2010-01-01 09:00:00-08', 10);
insert into foo values( 2 , 20 , 'hello', '2010-01-01 09:00:00-08', 20);
insert into foo values( 2 , 30 , 'hello', '2010-01-01 09:00:00-08', 30);
--group with all values for c and d NULL
insert into foo values( 3 , 40 , NULL, NULL, 40);
insert into foo values( 3 , 50 , NULL, NULL, 50);
insert into foo values(11, NULL, NULL, NULL, NULL);
insert into foo values(11, NULL, 'hello', '2010-01-02 09:00:00-05', NULL);
--group with all values for c and d NULL and later add non-null.
insert into foo values(12, NULL, NULL, NULL, NULL);
create or replace view v1(a , b, partialb, partialc, partiald, partiale, partialf)
as
SELECT a, b, _timescaledb_internal.partialize_agg(sum(b))
, _timescaledb_internal.partialize_agg(min(c))
, _timescaledb_internal.partialize_agg(max(d))
, _timescaledb_internal.partialize_agg(stddev(b))
, _timescaledb_internal.partialize_agg(stddev(e)) from foo group by a, b ;
create table t1 as select * from v1;
--sum 2114, collid 0, min(text) 2145, collid 100, max(ts) 2127
insert into foo values(12, 10, 'hello', '2010-01-02 09:00:00-05', 10);
insert into t1 select * from v1 where (a = 12 and b = 10) ;
--select a, sum(b), min(c) , max(d), stddev(b), stddev(e) from foo group by a order by a;
--results should match above query
CREATE OR REPLACE VIEW vfinal(a , sumb, minc, maxd, stddevb, stddeve)
AS
select a, _timescaledb_internal.finalize_agg( 'sum(numeric)', null, null, null, partialb, null::numeric ) sumb
, _timescaledb_internal.finalize_agg( 'min(text)', 'pg_catalog', 'default', null, partialc, null::text ) minc
, _timescaledb_internal.finalize_agg( 'max(timestamp with time zone)', null, null, null, partiald, null::timestamptz ) maxd
, _timescaledb_internal.finalize_agg( 'stddev(numeric)', null, null, null, partiale, null::numeric ) stddevb
, _timescaledb_internal.finalize_agg( 'stddev(int8)', null, null, null, partialf, null::numeric ) stddeve
from t1 group by a order by a ;
SELECT * FROM vfinal;
a | sumb | minc | maxd | stddevb | stddeve
----+------+-------+------------------------------+---------------------+---------------------
1 | 150 | abc | Sun Jan 03 09:00:00 2010 PST | 15.8113883008418967 | 15.8113883008418967
2 | 60 | hello | Fri Jan 01 09:00:00 2010 PST | 10.0000000000000000 | 10.0000000000000000
3 | 90 | | | 7.0710678118654752 | 7.0710678118654752
11 | | hello | Sat Jan 02 06:00:00 2010 PST | |
12 | 10 | hello | Sat Jan 02 06:00:00 2010 PST | |
(5 rows)
CREATE TABLE vfinal_res AS SELECT * FROM vfinal;
-- overwrite partials with dumped binary values from PostrgeSQL 13 --
TRUNCATE TABLE t1;
\COPY t1 FROM data/partialize_finalize_data.csv WITH CSV HEADER
--repeat query to verify partial serialization sanitization works for versions PG >= 14
CREATE TABLE vfinal_dump_res AS SELECT * FROM vfinal;
-- compare results to verify there is no difference
(SELECT * FROM vfinal_res) EXCEPT (SELECT * FROM vfinal_dump_res);
a | sumb | minc | maxd | stddevb | stddeve
---+------+------+------+---------+---------
(0 rows)
--with having clause --
select a, b , _timescaledb_internal.finalize_agg( 'min(text)', 'pg_catalog', 'default', null, partialc, null::text ) minc, _timescaledb_internal.finalize_agg( 'max(timestamp with time zone)', null, null, null, partiald, null::timestamptz ) maxd from t1 where b is not null group by a, b having _timescaledb_internal.finalize_agg( 'max(timestamp with time zone)', null, null, null, partiald, null::timestamptz ) is not null order by a, b;
a | b | minc | maxd
----+----+-------+------------------------------
1 | 10 | hello | Fri Jan 01 09:00:00 2010 PST
1 | 20 | abc | Sat Jan 02 09:00:00 2010 PST
1 | 30 | abcd | Sun Jan 03 09:00:00 2010 PST
1 | 50 | | Fri Jan 01 09:00:00 2010 PST
2 | 10 | hello | Fri Jan 01 09:00:00 2010 PST
2 | 20 | hello | Fri Jan 01 09:00:00 2010 PST
2 | 30 | hello | Fri Jan 01 09:00:00 2010 PST
12 | 10 | hello | Sat Jan 02 06:00:00 2010 PST
(8 rows)
--TEST5 test with TOAST data
drop view vfinal;
drop table t1;
drop view v1;
drop table foo;
create table foo( a integer, b timestamptz, toastval TEXT);
-- Set storage type to EXTERNAL to prevent PostgreSQL from compressing my
-- easily compressable string and instead store it with TOAST
ALTER TABLE foo ALTER COLUMN toastval SET STORAGE EXTERNAL;
SELECT count(*) FROM create_hypertable('foo', 'b');
NOTICE: adding not-null constraint to column "b"
count
-------
1
(1 row)
INSERT INTO foo VALUES( 1, '2004-10-19 10:23:54', repeat('this must be over 2k. ', 1100));
INSERT INTO foo VALUES(1, '2005-10-19 10:23:54', repeat('I am a tall big giraffe in the zoo. ', 1100));
INSERT INTO foo values( 1, '2005-01-01 00:00:00+00', NULL);
INSERT INTO foo values( 2, '2005-01-01 00:00:00+00', NULL);
create or replace view v1(a, partialb, partialtv) as select a, _timescaledb_internal.partialize_agg( max(b) ), _timescaledb_internal.partialize_agg( min(toastval)) from foo group by a;
EXPLAIN (VERBOSE, COSTS OFF)
create table t1 as select * from v1;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Partial HashAggregate
Output: _hyper_1_1_chunk.a, _timescaledb_internal.partialize_agg(PARTIAL max(_hyper_1_1_chunk.b)), _timescaledb_internal.partialize_agg(PARTIAL min(_hyper_1_1_chunk.toastval))
Group Key: _hyper_1_1_chunk.a
-> Append
-> Seq Scan on _timescaledb_internal._hyper_1_1_chunk
Output: _hyper_1_1_chunk.a, _hyper_1_1_chunk.b, _hyper_1_1_chunk.toastval
-> Seq Scan on _timescaledb_internal._hyper_1_2_chunk
Output: _hyper_1_2_chunk.a, _hyper_1_2_chunk.b, _hyper_1_2_chunk.toastval
-> Seq Scan on _timescaledb_internal._hyper_1_3_chunk
Output: _hyper_1_3_chunk.a, _hyper_1_3_chunk.b, _hyper_1_3_chunk.toastval
(10 rows)
create table t1 as select * from v1;
insert into t1 select * from v1;
select a, _timescaledb_internal.finalize_agg( 'max(timestamp with time zone)', null, null, null, partialb, null::timestamptz ) maxb,
_timescaledb_internal.finalize_agg( 'min(text)', 'pg_catalog', 'default', null, partialtv, null::text ) = repeat('I am a tall big giraffe in the zoo. ', 1100) mintv_equal
from t1 group by a order by a;
a | maxb | mintv_equal
---+------------------------------+-------------
1 | Wed Oct 19 10:23:54 2005 PDT | t
2 | Fri Dec 31 16:00:00 2004 PST |
(2 rows)
--non top-level partials
with cte as (
select a, _timescaledb_internal.partialize_agg(min(toastval)) tp from foo group by a
)
select length(tp) from cte;
length
--------
40700
(2 rows)
select length(_timescaledb_internal.partialize_agg( min(toastval))) from foo group by a;
length
--------
40700
(2 rows)
select length(_timescaledb_internal.partialize_agg(min(a+1))) from foo;
length
--------
4
(1 row)
\set ON_ERROR_STOP 0
select length(_timescaledb_internal.partialize_agg(1+min(a))) from foo;
ERROR: the input to partialize must be an aggregate
select length(_timescaledb_internal.partialize_agg(min(a)+min(a))) from foo;
ERROR: the input to partialize must be an aggregate
--non-trivial HAVING clause not allowed with partialize_agg
select time_bucket('1 hour', b) as b, _timescaledb_internal.partialize_agg(avg(a))
from foo
group by 1
having avg(a) > 3;
ERROR: cannot partialize aggregate with HAVING clause
--mixing partialized and non-partialized aggs is not allowed
select time_bucket('1 hour', b) as b, _timescaledb_internal.partialize_agg(avg(a)), sum(a)
from foo
group by 1;
ERROR: cannot mix partialized and non-partialized aggregates in the same statement
\set ON_ERROR_STOP 1
--partializing works with HAVING when the planner can effectively
--reduce it. In this case to a simple filter.
select time_bucket('1 hour', b) as b, toastval, _timescaledb_internal.partialize_agg(avg(a))
from foo
group by b, toastval
having toastval LIKE 'does not exist';
b | toastval | partialize_agg
---+----------+----------------
(0 rows)
--
-- TEST FINALIZEFUNC_EXTRA
--
-- create special aggregate to test ffunc_extra
-- Raise warning with the actual type being passed in
CREATE OR REPLACE FUNCTION fake_ffunc(a int8, b int, x anyelement)
RETURNS anyelement AS $$
BEGIN
RAISE WARNING 'type %', pg_typeof(x);
RETURN x;
END;
$$
LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION fake_sfunc(a int8, b int, x anyelement)
RETURNS int8 AS $$
BEGIN
RETURN b;
END; $$
LANGUAGE plpgsql;
CREATE AGGREGATE aggregate_to_test_ffunc_extra(int, anyelement) (
SFUNC = fake_sfunc,
STYPE = int8,
COMBINEFUNC = int8pl,
FINALFUNC = fake_ffunc,
PARALLEL = SAFE,
FINALFUNC_EXTRA
);
select aggregate_to_test_ffunc_extra(8, 'name'::text);
WARNING: type text
aggregate_to_test_ffunc_extra
-------------------------------
(1 row)
\set ON_ERROR_STOP 0
--errors on wrong input type array
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, null, part, null::text) from cte;
ERROR: cannot pass null input_type with FINALFUNC_EXTRA aggregates
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['a'::name, 'b'::name, 'c'::name]], part, null::text) from cte;
ERROR: invalid input type array: expecting slices of size 2
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array[]::name[]]::name[], part, null::text) from cte;
ERROR: invalid input type array: wrong number of dimensions
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[]::name[], part, null::text) from cte;
ERROR: invalid input type array: wrong number of dimensions
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['public'::name, 'int'::name], array['public', 'text']], part, null::text) from cte;
ERROR: invalid input type: public.int
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['public'::name, 'int4'::name], array['public', 'text']], part, null::text) from cte;
ERROR: invalid input type: public.int4
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['pg_catalog'::name, 'int4'::name], array['pg_catalog', 'text'], array['pg_catalog', 'text']], part, null::text) from cte;
ERROR: invalid number of input types
select _timescaledb_internal.finalize_agg(NULL::text,NULL::name,NULL::name,NULL::_name,NULL::bytea,a) over () from foo;
ERROR: finalize_agg_sfunc called in non-aggregate context
\set ON_ERROR_STOP 1
--make sure right type in warning and is null returns true
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 'name'::text)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['pg_catalog'::name, 'int4'::name], array['pg_catalog', 'text']], part, null::text) is null from cte;
WARNING: type text
?column?
----------
t
(1 row)
with cte as (SELECT _timescaledb_internal.partialize_agg(aggregate_to_test_ffunc_extra(8, 1::bigint)) as part)
select _timescaledb_internal.finalize_agg( 'aggregate_to_test_ffunc_extra(int, anyelement)', null, null, array[array['pg_catalog'::name, 'int4'::name], array['pg_catalog', 'int8']], part, null::text) is null from cte;
WARNING: type bigint
?column?
----------
t
(1 row)
-- Issue 4922
CREATE TABLE issue4922 (
time TIMESTAMPTZ NOT NULL,
value INTEGER
);
SELECT create_hypertable('issue4922', 'time');
create_hypertable
------------------------
(2,public,issue4922,t)
(1 row)
-- helper function: integer -> pseudorandom integer [0..100].
CREATE OR REPLACE FUNCTION mix(x INTEGER) RETURNS INTEGER AS $$ SELECT (((hashint4(x) / (pow(2, 31) - 1) + 1) / 2) * 100)::INTEGER $$ LANGUAGE SQL;
INSERT INTO issue4922 (time, value)
SELECT '2022-01-01 00:00:00-03'::timestamptz + interval '1 year' * mix(x), mix(x)
FROM generate_series(1, 100000) x(x);
SET force_parallel_mode = 'on';
SET parallel_setup_cost = 0;
-- Materialize partials from execution of parallel query plan
EXPLAIN (VERBOSE, COSTS OFF)
SELECT
_timescaledb_internal.partialize_agg(sum(value)) AS partial_sum,
_timescaledb_internal.partialize_agg(avg(value)) AS partial_avg,
_timescaledb_internal.partialize_agg(min(value)) AS partial_min,
_timescaledb_internal.partialize_agg(max(value)) AS partial_max,
_timescaledb_internal.partialize_agg(count(*)) AS partial_count
FROM public.issue4922;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Partial Aggregate
Output: _timescaledb_internal.partialize_agg(PARTIAL sum(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL avg(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL min(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL max(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL count(*))
-> Gather
Output: (PARTIAL sum(_hyper_2_4_chunk.value)), (PARTIAL avg(_hyper_2_4_chunk.value)), (PARTIAL min(_hyper_2_4_chunk.value)), (PARTIAL max(_hyper_2_4_chunk.value)), (PARTIAL count(*))
Workers Planned: 2
-> Partial Aggregate
Output: PARTIAL sum(_hyper_2_4_chunk.value), PARTIAL avg(_hyper_2_4_chunk.value), PARTIAL min(_hyper_2_4_chunk.value), PARTIAL max(_hyper_2_4_chunk.value), PARTIAL count(*)
-> Parallel Append
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_4_chunk
Output: _hyper_2_4_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_5_chunk
Output: _hyper_2_5_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_6_chunk
Output: _hyper_2_6_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_7_chunk
Output: _hyper_2_7_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_8_chunk
Output: _hyper_2_8_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_9_chunk
Output: _hyper_2_9_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_10_chunk
Output: _hyper_2_10_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_11_chunk
Output: _hyper_2_11_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_12_chunk
Output: _hyper_2_12_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_13_chunk
Output: _hyper_2_13_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_14_chunk
Output: _hyper_2_14_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_15_chunk
Output: _hyper_2_15_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_16_chunk
Output: _hyper_2_16_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_17_chunk
Output: _hyper_2_17_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_18_chunk
Output: _hyper_2_18_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_19_chunk
Output: _hyper_2_19_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_20_chunk
Output: _hyper_2_20_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_21_chunk
Output: _hyper_2_21_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_22_chunk
Output: _hyper_2_22_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_23_chunk
Output: _hyper_2_23_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_24_chunk
Output: _hyper_2_24_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_25_chunk
Output: _hyper_2_25_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_26_chunk
Output: _hyper_2_26_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_27_chunk
Output: _hyper_2_27_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_28_chunk
Output: _hyper_2_28_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_29_chunk
Output: _hyper_2_29_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_30_chunk
Output: _hyper_2_30_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_31_chunk
Output: _hyper_2_31_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_32_chunk
Output: _hyper_2_32_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_33_chunk
Output: _hyper_2_33_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_34_chunk
Output: _hyper_2_34_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_35_chunk
Output: _hyper_2_35_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_36_chunk
Output: _hyper_2_36_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_37_chunk
Output: _hyper_2_37_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_38_chunk
Output: _hyper_2_38_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_39_chunk
Output: _hyper_2_39_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_40_chunk
Output: _hyper_2_40_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_41_chunk
Output: _hyper_2_41_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_42_chunk
Output: _hyper_2_42_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_43_chunk
Output: _hyper_2_43_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_44_chunk
Output: _hyper_2_44_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_45_chunk
Output: _hyper_2_45_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_46_chunk
Output: _hyper_2_46_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_47_chunk
Output: _hyper_2_47_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_48_chunk
Output: _hyper_2_48_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_49_chunk
Output: _hyper_2_49_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_50_chunk
Output: _hyper_2_50_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_51_chunk
Output: _hyper_2_51_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_52_chunk
Output: _hyper_2_52_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_53_chunk
Output: _hyper_2_53_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_54_chunk
Output: _hyper_2_54_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_55_chunk
Output: _hyper_2_55_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_56_chunk
Output: _hyper_2_56_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_57_chunk
Output: _hyper_2_57_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_58_chunk
Output: _hyper_2_58_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_59_chunk
Output: _hyper_2_59_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_60_chunk
Output: _hyper_2_60_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_61_chunk
Output: _hyper_2_61_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_62_chunk
Output: _hyper_2_62_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_63_chunk
Output: _hyper_2_63_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_64_chunk
Output: _hyper_2_64_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_65_chunk
Output: _hyper_2_65_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_66_chunk
Output: _hyper_2_66_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_67_chunk
Output: _hyper_2_67_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_68_chunk
Output: _hyper_2_68_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_69_chunk
Output: _hyper_2_69_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_70_chunk
Output: _hyper_2_70_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_71_chunk
Output: _hyper_2_71_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_72_chunk
Output: _hyper_2_72_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_73_chunk
Output: _hyper_2_73_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_74_chunk
Output: _hyper_2_74_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_75_chunk
Output: _hyper_2_75_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_76_chunk
Output: _hyper_2_76_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_77_chunk
Output: _hyper_2_77_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_78_chunk
Output: _hyper_2_78_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_79_chunk
Output: _hyper_2_79_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_80_chunk
Output: _hyper_2_80_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_81_chunk
Output: _hyper_2_81_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_82_chunk
Output: _hyper_2_82_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_83_chunk
Output: _hyper_2_83_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_84_chunk
Output: _hyper_2_84_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_85_chunk
Output: _hyper_2_85_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_86_chunk
Output: _hyper_2_86_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_87_chunk
Output: _hyper_2_87_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_88_chunk
Output: _hyper_2_88_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_89_chunk
Output: _hyper_2_89_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_90_chunk
Output: _hyper_2_90_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_91_chunk
Output: _hyper_2_91_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_92_chunk
Output: _hyper_2_92_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_93_chunk
Output: _hyper_2_93_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_94_chunk
Output: _hyper_2_94_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_95_chunk
Output: _hyper_2_95_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_96_chunk
Output: _hyper_2_96_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_97_chunk
Output: _hyper_2_97_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_98_chunk
Output: _hyper_2_98_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_99_chunk
Output: _hyper_2_99_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_100_chunk
Output: _hyper_2_100_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_101_chunk
Output: _hyper_2_101_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_102_chunk
Output: _hyper_2_102_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_103_chunk
Output: _hyper_2_103_chunk.value
-> Parallel Seq Scan on _timescaledb_internal._hyper_2_104_chunk
Output: _hyper_2_104_chunk.value
(210 rows)
CREATE MATERIALIZED VIEW issue4922_partials_parallel AS
SELECT
_timescaledb_internal.partialize_agg(sum(value)) AS partial_sum,
_timescaledb_internal.partialize_agg(avg(value)) AS partial_avg,
_timescaledb_internal.partialize_agg(min(value)) AS partial_min,
_timescaledb_internal.partialize_agg(max(value)) AS partial_max,
_timescaledb_internal.partialize_agg(count(*)) AS partial_count
FROM public.issue4922;
-- Materialize partials from execution of non-parallel query plan
SET max_parallel_workers_per_gather = 0;
EXPLAIN (VERBOSE, COSTS OFF)
SELECT
_timescaledb_internal.partialize_agg(sum(value)) AS partial_sum,
_timescaledb_internal.partialize_agg(avg(value)) AS partial_avg,
_timescaledb_internal.partialize_agg(min(value)) AS partial_min,
_timescaledb_internal.partialize_agg(max(value)) AS partial_max,
_timescaledb_internal.partialize_agg(count(*)) AS partial_count
FROM public.issue4922;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Partial Aggregate
Output: _timescaledb_internal.partialize_agg(PARTIAL sum(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL avg(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL min(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL max(_hyper_2_4_chunk.value)), _timescaledb_internal.partialize_agg(PARTIAL count(*))
-> Append
-> Seq Scan on _timescaledb_internal._hyper_2_4_chunk
Output: _hyper_2_4_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_5_chunk
Output: _hyper_2_5_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_6_chunk
Output: _hyper_2_6_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_7_chunk
Output: _hyper_2_7_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_8_chunk
Output: _hyper_2_8_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_9_chunk
Output: _hyper_2_9_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_10_chunk
Output: _hyper_2_10_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_11_chunk
Output: _hyper_2_11_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_12_chunk
Output: _hyper_2_12_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_13_chunk
Output: _hyper_2_13_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_14_chunk
Output: _hyper_2_14_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_15_chunk
Output: _hyper_2_15_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_16_chunk
Output: _hyper_2_16_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_17_chunk
Output: _hyper_2_17_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_18_chunk
Output: _hyper_2_18_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_19_chunk
Output: _hyper_2_19_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_20_chunk
Output: _hyper_2_20_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_21_chunk
Output: _hyper_2_21_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_22_chunk
Output: _hyper_2_22_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_23_chunk
Output: _hyper_2_23_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_24_chunk
Output: _hyper_2_24_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_25_chunk
Output: _hyper_2_25_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_26_chunk
Output: _hyper_2_26_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_27_chunk
Output: _hyper_2_27_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_28_chunk
Output: _hyper_2_28_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_29_chunk
Output: _hyper_2_29_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_30_chunk
Output: _hyper_2_30_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_31_chunk
Output: _hyper_2_31_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_32_chunk
Output: _hyper_2_32_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_33_chunk
Output: _hyper_2_33_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_34_chunk
Output: _hyper_2_34_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_35_chunk
Output: _hyper_2_35_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_36_chunk
Output: _hyper_2_36_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_37_chunk
Output: _hyper_2_37_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_38_chunk
Output: _hyper_2_38_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_39_chunk
Output: _hyper_2_39_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_40_chunk
Output: _hyper_2_40_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_41_chunk
Output: _hyper_2_41_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_42_chunk
Output: _hyper_2_42_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_43_chunk
Output: _hyper_2_43_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_44_chunk
Output: _hyper_2_44_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_45_chunk
Output: _hyper_2_45_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_46_chunk
Output: _hyper_2_46_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_47_chunk
Output: _hyper_2_47_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_48_chunk
Output: _hyper_2_48_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_49_chunk
Output: _hyper_2_49_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_50_chunk
Output: _hyper_2_50_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_51_chunk
Output: _hyper_2_51_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_52_chunk
Output: _hyper_2_52_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_53_chunk
Output: _hyper_2_53_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_54_chunk
Output: _hyper_2_54_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_55_chunk
Output: _hyper_2_55_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_56_chunk
Output: _hyper_2_56_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_57_chunk
Output: _hyper_2_57_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_58_chunk
Output: _hyper_2_58_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_59_chunk
Output: _hyper_2_59_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_60_chunk
Output: _hyper_2_60_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_61_chunk
Output: _hyper_2_61_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_62_chunk
Output: _hyper_2_62_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_63_chunk
Output: _hyper_2_63_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_64_chunk
Output: _hyper_2_64_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_65_chunk
Output: _hyper_2_65_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_66_chunk
Output: _hyper_2_66_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_67_chunk
Output: _hyper_2_67_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_68_chunk
Output: _hyper_2_68_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_69_chunk
Output: _hyper_2_69_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_70_chunk
Output: _hyper_2_70_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_71_chunk
Output: _hyper_2_71_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_72_chunk
Output: _hyper_2_72_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_73_chunk
Output: _hyper_2_73_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_74_chunk
Output: _hyper_2_74_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_75_chunk
Output: _hyper_2_75_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_76_chunk
Output: _hyper_2_76_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_77_chunk
Output: _hyper_2_77_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_78_chunk
Output: _hyper_2_78_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_79_chunk
Output: _hyper_2_79_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_80_chunk
Output: _hyper_2_80_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_81_chunk
Output: _hyper_2_81_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_82_chunk
Output: _hyper_2_82_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_83_chunk
Output: _hyper_2_83_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_84_chunk
Output: _hyper_2_84_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_85_chunk
Output: _hyper_2_85_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_86_chunk
Output: _hyper_2_86_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_87_chunk
Output: _hyper_2_87_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_88_chunk
Output: _hyper_2_88_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_89_chunk
Output: _hyper_2_89_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_90_chunk
Output: _hyper_2_90_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_91_chunk
Output: _hyper_2_91_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_92_chunk
Output: _hyper_2_92_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_93_chunk
Output: _hyper_2_93_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_94_chunk
Output: _hyper_2_94_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_95_chunk
Output: _hyper_2_95_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_96_chunk
Output: _hyper_2_96_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_97_chunk
Output: _hyper_2_97_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_98_chunk
Output: _hyper_2_98_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_99_chunk
Output: _hyper_2_99_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_100_chunk
Output: _hyper_2_100_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_101_chunk
Output: _hyper_2_101_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_102_chunk
Output: _hyper_2_102_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_103_chunk
Output: _hyper_2_103_chunk.value
-> Seq Scan on _timescaledb_internal._hyper_2_104_chunk
Output: _hyper_2_104_chunk.value
(205 rows)
CREATE MATERIALIZED VIEW issue4922_partials_non_parallel AS
SELECT
_timescaledb_internal.partialize_agg(sum(value)) AS partial_sum,
_timescaledb_internal.partialize_agg(avg(value)) AS partial_avg,
_timescaledb_internal.partialize_agg(min(value)) AS partial_min,
_timescaledb_internal.partialize_agg(max(value)) AS partial_max,
_timescaledb_internal.partialize_agg(count(*)) AS partial_count
FROM public.issue4922;
RESET max_parallel_workers_per_gather;
-- partials should be the same in both parallel and non-parallel execution
SELECT * FROM issue4922_partials_parallel;
partial_sum | partial_avg | partial_min | partial_max | partial_count
--------------------+--------------------------------------------------------------------------------------------+-------------+-------------+--------------------
\x00000000004c4fa9 | \x00000001000000000000001400000002000000010000000800000000000186a00000000800000000004c4fa9 | \x00000000 | \x00000064 | \x00000000000186a0
(1 row)
SELECT * FROM issue4922_partials_non_parallel;
partial_sum | partial_avg | partial_min | partial_max | partial_count
--------------------+--------------------------------------------------------------------------------------------+-------------+-------------+--------------------
\x00000000004c4fa9 | \x00000001000000000000001400000002000000010000000800000000000186a00000000800000000004c4fa9 | \x00000000 | \x00000064 | \x00000000000186a0
(1 row)
-- Compare results from partial and non-partial query execution
SELECT
sum(value),
avg(value),
min(value),
max(value),
count(*)
FROM issue4922;
sum | avg | min | max | count
---------+---------------------+-----+-----+--------
5001129 | 50.0112900000000000 | 0 | 100 | 100000
(1 row)
-- The results should be the EQUAL TO the previous query
SELECT
_timescaledb_internal.finalize_agg('pg_catalog.sum(integer)'::text, NULL::name, NULL::name, '{{pg_catalog,int4}}'::name[], partial_sum, NULL::bigint) AS sum,
_timescaledb_internal.finalize_agg('pg_catalog.avg(integer)'::text, NULL::name, NULL::name, '{{pg_catalog,int4}}'::name[], partial_avg, NULL::numeric) AS avg,
_timescaledb_internal.finalize_agg('pg_catalog.min(integer)'::text, NULL::name, NULL::name, '{{pg_catalog,int4}}'::name[], partial_min, NULL::integer) AS min,
_timescaledb_internal.finalize_agg('pg_catalog.max(integer)'::text, NULL::name, NULL::name, '{{pg_catalog,int4}}'::name[], partial_max, NULL::integer) AS max,
_timescaledb_internal.finalize_agg('pg_catalog.count()'::text, NULL::name, NULL::name, '{}'::name[], partial_count, NULL::bigint) AS count
FROM issue4922_partials_parallel;
sum | avg | min | max | count
---------+---------------------+-----+-----+--------
5001129 | 50.0112900000000000 | 0 | 100 | 100000
(1 row)