timescaledb/src/chunk_constraint.c
Erik Nordström 21efcce95c Refactor chunk table creation and unify constraint handling
This change is part of an effort to create a consistent way
of dealing with metadata catalog updates, which is currently
a mix of C API and INSERT/UPDATE/DELETE statements from SQL
code. This mix makes catalog handling unnecessarily complex as
there are multiple ways to update metadata, increasing the risk
of security issues with publically exposed SQL functions. It also
complicates things like cache invalidation, requiring different
mechanisms for C and SQL code. Catalog updates from SQL code
require triggers on metadata tables for cache invalidation that
do not work with native catalog updates.

The creation of chunks has been particularly messy in this regard,
making the code hard to follow. Especially the handling of a chunk's
constraints, where dimensional and other constraints were handled
differently. With this change, constraint handling is now consistent
across constraint types with a single API for updating metadata.

Reduce memory usage for out-of-order inserts

The chunk_result_relation_info should be put on the chunk memory
context. This will cause the rri constraint expr to also go onto
that context and be correctly freed when the chunk insert state
is destroyed.
2017-12-28 11:24:29 +01:00

643 lines
17 KiB
C

#include <postgres.h>
#include <utils/hsearch.h>
#include <utils/relcache.h>
#include <utils/rel.h>
#include <utils/builtins.h>
#include <utils/lsyscache.h>
#include <utils/syscache.h>
#include <access/heapam.h>
#include <access/xact.h>
#include <catalog/indexing.h>
#include <catalog/pg_constraint.h>
#include <catalog/pg_constraint_fn.h>
#include <catalog/objectaddress.h>
#include <catalog/dependency.h>
#include <funcapi.h>
#include "scanner.h"
#include "chunk_constraint.h"
#include "chunk_index.h"
#include "dimension_vector.h"
#include "dimension_slice.h"
#include "hypercube.h"
#include "chunk.h"
#include "hypertable.h"
#include "errors.h"
#include "process_utility.h"
#define DEFAULT_EXTRA_CONSTRAINTS_SIZE 4
#define CHUNK_CONSTRAINTS_SIZE(num_constraints) \
((sizeof(ChunkConstraint) * num_constraints))
ChunkConstraints *
chunk_constraints_alloc(int size_hint)
{
ChunkConstraints *ccs = palloc(sizeof(ChunkConstraints));
ccs->capacity = size_hint + DEFAULT_EXTRA_CONSTRAINTS_SIZE;
ccs->num_constraints = 0;
ccs->num_dimension_constraints = 0;
ccs->constraints = palloc0(CHUNK_CONSTRAINTS_SIZE(ccs->capacity));
return ccs;
}
ChunkConstraints *
chunk_constraints_copy(ChunkConstraints *ccs)
{
ChunkConstraints *copy = palloc(sizeof(ChunkConstraints));
memcpy(copy, ccs, sizeof(ChunkConstraints));
copy->constraints = palloc0(CHUNK_CONSTRAINTS_SIZE(ccs->capacity));
memcpy(copy->constraints, ccs->constraints, CHUNK_CONSTRAINTS_SIZE(ccs->num_constraints));
return copy;
}
static void
chunk_constraints_expand(ChunkConstraints *ccs, int16 new_capacity)
{
if (new_capacity <= ccs->capacity)
return;
ccs->capacity = new_capacity;
ccs->constraints = repalloc(ccs->constraints, CHUNK_CONSTRAINTS_SIZE(new_capacity));
}
static ChunkConstraint *
chunk_constraints_add(ChunkConstraints *ccs,
int32 chunk_id,
int32 dimension_slice_id,
const char *constraint_name,
const char *hypertable_constraint_name)
{
ChunkConstraint *cc;
chunk_constraints_expand(ccs, ccs->num_constraints + 1);
cc = &ccs->constraints[ccs->num_constraints++];
cc->fd.chunk_id = chunk_id;
cc->fd.dimension_slice_id = dimension_slice_id;
if (NULL == constraint_name)
{
if (is_dimension_constraint(cc))
{
snprintf(NameStr(cc->fd.constraint_name),
NAMEDATALEN,
"constraint_%d",
cc->fd.dimension_slice_id);
namestrcpy(&cc->fd.hypertable_constraint_name, "");
}
else if (NULL != hypertable_constraint_name)
{
CatalogSecurityContext sec_ctx;
char constrname[100];
catalog_become_owner(catalog_get(), &sec_ctx);
snprintf(constrname,
100,
"%d_" INT64_FORMAT "_%s",
cc->fd.chunk_id,
catalog_table_next_seq_id(catalog_get(), CHUNK_CONSTRAINT),
hypertable_constraint_name);
catalog_restore_user(&sec_ctx);
namestrcpy(&cc->fd.constraint_name, constrname);
}
}
else
namestrcpy(&cc->fd.constraint_name, constraint_name);
if (NULL != hypertable_constraint_name)
namestrcpy(&cc->fd.hypertable_constraint_name, hypertable_constraint_name);
if (is_dimension_constraint(cc))
ccs->num_dimension_constraints++;
return cc;
}
static void
chunk_constraint_fill_tuple_values(ChunkConstraint *cc,
Datum values[Natts_chunk_constraint],
bool nulls[Natts_chunk_constraint])
{
memset(values, 0, sizeof(Datum) * Natts_chunk_constraint);
values[Anum_chunk_constraint_chunk_id - 1] = Int32GetDatum(cc->fd.chunk_id);
values[Anum_chunk_constraint_dimension_slice_id - 1] = Int32GetDatum(cc->fd.dimension_slice_id);
values[Anum_chunk_constraint_constraint_name - 1] = NameGetDatum(&cc->fd.constraint_name);
values[Anum_chunk_constraint_hypertable_constraint_name - 1] =
NameGetDatum(&cc->fd.hypertable_constraint_name);
if (is_dimension_constraint(cc))
nulls[Anum_chunk_constraint_hypertable_constraint_name - 1] = true;
else
nulls[Anum_chunk_constraint_dimension_slice_id - 1] = true;
}
static void
chunk_constraint_insert_relation(Relation rel, ChunkConstraint *cc)
{
TupleDesc desc = RelationGetDescr(rel);
Datum values[Natts_chunk_constraint];
bool nulls[Natts_chunk_constraint] = {false};
chunk_constraint_fill_tuple_values(cc, values, nulls);
catalog_insert_values(rel, desc, values, nulls);
}
/*
* Insert multiple chunk constraints into the metadata catalog.
*/
static void
chunk_constraints_insert(ChunkConstraints *ccs)
{
Catalog *catalog = catalog_get();
CatalogSecurityContext sec_ctx;
Relation rel;
int i;
rel = heap_open(catalog->tables[CHUNK_CONSTRAINT].id, RowExclusiveLock);
catalog_become_owner(catalog_get(), &sec_ctx);
for (i = 0; i < ccs->num_constraints; i++)
chunk_constraint_insert_relation(rel, &ccs->constraints[i]);
catalog_restore_user(&sec_ctx);
heap_close(rel, RowExclusiveLock);
}
/*
* Insert a single chunk constraints into the metadata catalog.
*/
static void
chunk_constraint_insert(ChunkConstraint *constraint)
{
Catalog *catalog = catalog_get();
CatalogSecurityContext sec_ctx;
Relation rel;
rel = heap_open(catalog->tables[CHUNK_CONSTRAINT].id, RowExclusiveLock);
catalog_become_owner(catalog_get(), &sec_ctx);
chunk_constraint_insert_relation(rel, constraint);
catalog_restore_user(&sec_ctx);
heap_close(rel, RowExclusiveLock);
}
static ChunkConstraint *
chunk_constraints_add_from_tuple(ChunkConstraints *ccs, HeapTuple tuple)
{
FormData_chunk_constraint *form = (FormData_chunk_constraint *) GETSTRUCT(tuple);
int32 dimension_slice_id = form->dimension_slice_id;
const char *hypertable_constraint_name = NameStr(form->hypertable_constraint_name);
if (heap_attisnull(tuple, Anum_chunk_constraint_dimension_slice_id))
dimension_slice_id = 0;
else
hypertable_constraint_name = "";
return chunk_constraints_add(ccs,
form->chunk_id,
dimension_slice_id,
NameStr(form->constraint_name),
hypertable_constraint_name);
}
/*
* Add a constraint to a chunk table.
*/
static Oid
chunk_constraint_create_on_table(ChunkConstraint *cc, Oid chunk_oid)
{
HeapTuple tuple;
Datum values[Natts_chunk_constraint];
bool nulls[Natts_chunk_constraint] = {false};
CatalogSecurityContext sec_ctx;
Relation rel;
chunk_constraint_fill_tuple_values(cc, values, nulls);
rel = RelationIdGetRelation(catalog_table_get_id(catalog_get(), CHUNK_CONSTRAINT));
tuple = heap_form_tuple(RelationGetDescr(rel), values, nulls);
RelationClose(rel);
catalog_become_owner(catalog_get(), &sec_ctx);
CatalogInternalCall1(DDL_ADD_CHUNK_CONSTRAINT, HeapTupleGetDatum(tuple));
catalog_restore_user(&sec_ctx);
return get_relation_constraint_oid(chunk_oid, NameStr(cc->fd.constraint_name), true);
}
/*
* Create a constraint on a chunk table, including adding relevant metadata to
* the catalog.
*/
static Oid
chunk_constraint_create(ChunkConstraint *cc,
Oid chunk_oid,
int32 chunk_id,
Oid hypertable_oid,
int32 hypertable_id)
{
Oid chunk_constraint_oid;
process_utility_set_expect_chunk_modification(true);
chunk_constraint_oid = chunk_constraint_create_on_table(cc, chunk_oid);
process_utility_set_expect_chunk_modification(false);
/*
* The table constraint might not have been created if this constraint
* corresponds to a dimension slice that covers the entire range of values
* in the particular dimension. In that case, there is no need to add a
* table constraint.
*/
if (!OidIsValid(chunk_constraint_oid))
return InvalidOid;
if (!is_dimension_constraint(cc))
{
Oid hypertable_constraint_oid = get_relation_constraint_oid(hypertable_oid,
NameStr(cc->fd.hypertable_constraint_name),
false);
HeapTuple tuple = SearchSysCache1(CONSTROID, hypertable_constraint_oid);
if (HeapTupleIsValid(tuple))
{
FormData_pg_constraint *constr = (FormData_pg_constraint *) GETSTRUCT(tuple);
if (OidIsValid(constr->conindid) && constr->contype != CONSTRAINT_FOREIGN)
chunk_index_create_from_constraint(hypertable_id,
hypertable_constraint_oid,
chunk_id,
chunk_constraint_oid);
ReleaseSysCache(tuple);
}
}
return chunk_constraint_oid;
}
/*
* Create a set of constraints on a chunk table.
*/
void
chunk_constraints_create(ChunkConstraints *ccs,
Oid chunk_oid,
int32 chunk_id,
Oid hypertable_oid,
int32 hypertable_id)
{
int i;
chunk_constraints_insert(ccs);
for (i = 0; i < ccs->num_constraints; i++)
chunk_constraint_create(&ccs->constraints[i],
chunk_oid,
chunk_id,
hypertable_oid,
hypertable_id);
}
static bool
chunk_constraint_for_dimension_slice(TupleInfo *ti, void *data)
{
return !heap_attisnull(ti->tuple, Anum_chunk_constraint_dimension_slice_id);
}
static bool
chunk_constraint_tuple_found(TupleInfo *ti, void *data)
{
ChunkConstraints *ccs = data;
chunk_constraints_add_from_tuple(ccs, ti->tuple);
return true;
}
/*
* Scan for chunk constraints given a chunk ID.
*/
static int
chunk_constraint_scan_by_chunk_id_internal(int32 chunk_id,
tuple_found_func tuple_found,
tuple_found_func tuple_filter,
void *data,
LOCKMODE lockmode)
{
Catalog *catalog = catalog_get();
ScanKeyData scankey[1];
ScannerCtx scanctx = {
.table = catalog->tables[CHUNK_CONSTRAINT].id,
.index = catalog->tables[CHUNK_CONSTRAINT].index_ids[CHUNK_CONSTRAINT_CHUNK_ID_DIMENSION_SLICE_ID_IDX],
.scantype = ScannerTypeIndex,
.nkeys = 1,
.scankey = scankey,
.data = data,
.tuple_found = tuple_found,
.filter = tuple_filter,
.lockmode = lockmode,
.scandirection = ForwardScanDirection,
};
ScanKeyInit(&scankey[0],
Anum_chunk_constraint_chunk_id_dimension_slice_id_idx_chunk_id,
BTEqualStrategyNumber,
F_INT4EQ,
Int32GetDatum(chunk_id));
return scanner_scan(&scanctx);
}
/*
* Scan all the chunk's constraints given its chunk ID.
*
* Returns a set of chunk constraints.
*/
ChunkConstraints *
chunk_constraint_scan_by_chunk_id(int32 chunk_id, Size num_constraints_hint)
{
ChunkConstraints *constraints = chunk_constraints_alloc(num_constraints_hint);
int num_found;
num_found = chunk_constraint_scan_by_chunk_id_internal(chunk_id,
chunk_constraint_tuple_found,
NULL,
constraints,
AccessShareLock);
if (num_found != constraints->num_constraints)
elog(ERROR, "Unexpected number of constraints found for chunk %d", chunk_id);
return constraints;
}
typedef struct ChunkConstraintScanData
{
ChunkScanCtx *scanctx;
DimensionSlice *slice;
} ChunkConstraintScanData;
static bool
chunk_constraint_dimension_slice_id_tuple_found(TupleInfo *ti, void *data)
{
ChunkConstraintScanData *ccsd = data;
ChunkScanCtx *scanctx = ccsd->scanctx;
Hyperspace *hs = scanctx->space;
Chunk *chunk;
ChunkScanEntry *entry;
bool found;
int32 chunk_id = heap_getattr(ti->tuple, Anum_chunk_constraint_chunk_id, ti->desc, &found);
Assert(!heap_attisnull(ti->tuple, Anum_chunk_constraint_dimension_slice_id));
entry = hash_search(scanctx->htab, &chunk_id, HASH_ENTER, &found);
if (!found)
{
chunk = chunk_create_stub(chunk_id, hs->num_dimensions);
chunk->cube = hypercube_alloc(hs->num_dimensions);
entry->chunk = chunk;
}
else
chunk = entry->chunk;
chunk_constraints_add_from_tuple(chunk->constraints, ti->tuple);
hypercube_add_slice(chunk->cube, ccsd->slice);
if (scanctx->early_abort &&
chunk->constraints->num_dimension_constraints == hs->num_dimensions)
return false;
return true;
}
/*
* Scan for all chunk constraints that match the given slice ID. The chunk
* constraints are saved in the chunk scan context.
*/
int
chunk_constraint_scan_by_dimension_slice_id(DimensionSlice *slice, ChunkScanCtx *ctx)
{
Catalog *catalog = catalog_get();
ScanKeyData scankey[1];
ChunkConstraintScanData data = {
.scanctx = ctx,
.slice = slice,
};
ScannerCtx scanctx = {
.table = catalog->tables[CHUNK_CONSTRAINT].id,
.index = catalog->tables[CHUNK_CONSTRAINT].index_ids[CHUNK_CONSTRAINT_CHUNK_ID_DIMENSION_SLICE_ID_IDX],
.scantype = ScannerTypeIndex,
.nkeys = 1,
.scankey = scankey,
.data = &data,
.filter = chunk_constraint_for_dimension_slice,
.tuple_found = chunk_constraint_dimension_slice_id_tuple_found,
.lockmode = AccessShareLock,
.scandirection = ForwardScanDirection,
};
ScanKeyInit(&scankey[0],
Anum_chunk_constraint_chunk_id_dimension_slice_id_idx_dimension_slice_id,
BTEqualStrategyNumber,
F_INT4EQ,
Int32GetDatum(slice->fd.id));
return scanner_scan(&scanctx);
}
static bool
chunk_constraint_need_on_chunk(Form_pg_constraint conform)
{
if (conform->contype == CONSTRAINT_CHECK)
{
/*
* check and not null constraints handled by regular inheritance (from
* docs): All check constraints and not-null constraints on a parent
* table are automatically inherited by its children, unless
* explicitly specified otherwise with NO INHERIT clauses. Other types
* of constraints (unique, primary key, and foreign key constraints)
* are not inherited."
*/
if (conform->connoinherit)
{
ereport(ERROR,
(errcode(ERRCODE_IO_OPERATION_NOT_SUPPORTED),
errmsg("NO INHERIT option not supported on hypertables: %s", conform->conname.data)
));
}
return false;
}
return true;
}
int
chunk_constraints_add_dimension_constraints(ChunkConstraints *ccs,
int32 chunk_id,
Hypercube *cube)
{
int i;
for (i = 0; i < cube->num_slices; i++)
chunk_constraints_add(ccs, chunk_id, cube->slices[i]->fd.id, NULL, NULL);
return cube->num_slices;
}
int
chunk_constraints_add_inheritable_constraints(ChunkConstraints *ccs,
int32 chunk_id,
Oid hypertable_oid)
{
ScanKeyData skey;
Relation rel;
SysScanDesc scan;
HeapTuple htup;
int num_added = 0;
ScanKeyInit(&skey,
Anum_pg_constraint_conrelid,
BTEqualStrategyNumber, F_OIDEQ, hypertable_oid);
rel = heap_open(ConstraintRelationId, AccessShareLock);
scan = systable_beginscan(rel, ConstraintRelidIndexId, true,
NULL, 1, &skey);
while (HeapTupleIsValid(htup = systable_getnext(scan)))
{
Form_pg_constraint pg_constraint = (Form_pg_constraint) GETSTRUCT(htup);
if (chunk_constraint_need_on_chunk(pg_constraint))
{
chunk_constraints_add(ccs, chunk_id, 0, NULL, NameStr(pg_constraint->conname));
num_added++;
}
}
systable_endscan(scan);
heap_close(rel, AccessShareLock);
return num_added;
}
void
chunk_constraint_create_on_chunk(Chunk *chunk, Oid constraint_oid)
{
const char *constrname;
ChunkConstraint *cc;
constrname = get_constraint_name(constraint_oid);
cc = chunk_constraints_add(chunk->constraints, chunk->fd.id, 0, NULL, constrname);
chunk_constraint_insert(cc);
chunk_constraint_create(cc,
chunk->table_id,
chunk->fd.id,
chunk->hypertable_relid,
chunk->fd.hypertable_id);
}
typedef struct DeleteConstraintInfo
{
int32 chunk_id;
Oid chunk_oid;
char *hypertable_constraint_name;
} DeleteConstraintInfo;
static bool
chunk_constraint_delete_tuple(TupleInfo *ti, void *data)
{
DeleteConstraintInfo *info = data;
bool isnull;
Datum constrname = heap_getattr(ti->tuple, Anum_chunk_constraint_constraint_name,
ti->desc, &isnull);
ObjectAddress constrobj = {
.classId = ConstraintRelationId,
.objectId = get_relation_constraint_oid(info->chunk_oid,
NameStr(*DatumGetName(constrname)), false),
};
catalog_delete(ti->scanrel, ti->tuple);
performDeletion(&constrobj, DROP_RESTRICT, 0);
return true;
}
static bool
hypertable_constraint_tuple_filter(TupleInfo *ti, void *data)
{
DeleteConstraintInfo *info = data;
bool nulls[Natts_chunk_constraint];
Datum values[Natts_chunk_constraint];
int32 chunk_id;
const char *constrname;
heap_deform_tuple(ti->tuple, ti->desc, values, nulls);
if (nulls[Anum_chunk_constraint_hypertable_constraint_name - 1])
return false;
chunk_id = DatumGetInt32(values[Anum_chunk_constraint_chunk_id - 1]);
constrname = NameStr(*DatumGetName(values[Anum_chunk_constraint_hypertable_constraint_name - 1]));
return info->chunk_id == chunk_id &&
NULL != info->hypertable_constraint_name &&
strcmp(info->hypertable_constraint_name, constrname) == 0;
}
int
chunk_constraint_delete_by_hypertable_constraint_name(int32 chunk_id,
Oid chunk_oid,
char *hypertable_constraint_name)
{
DeleteConstraintInfo info = {
.chunk_id = chunk_id,
.chunk_oid = chunk_oid,
.hypertable_constraint_name = hypertable_constraint_name,
};
return chunk_constraint_scan_by_chunk_id_internal(chunk_id,
chunk_constraint_delete_tuple,
hypertable_constraint_tuple_filter,
&info,
RowExclusiveLock);
}
int
chunk_constraint_delete_by_chunk_id(int32 chunk_id, Oid chunk_oid)
{
DeleteConstraintInfo info = {
.chunk_id = chunk_id,
.chunk_oid = chunk_oid,
.hypertable_constraint_name = NULL,
};
return chunk_constraint_scan_by_chunk_id_internal(chunk_id,
chunk_constraint_delete_tuple,
NULL,
&info,
RowExclusiveLock);
}
void
chunk_constraint_recreate(ChunkConstraint *cc, Oid chunk_oid)
{
ObjectAddress constrobj = {
.classId = ConstraintRelationId,
.objectId = get_relation_constraint_oid(chunk_oid,
NameStr(cc->fd.constraint_name), false),
};
performDeletion(&constrobj, DROP_RESTRICT, 0);
chunk_constraint_create_on_table(cc, chunk_oid);
}