mirror of
https://github.com/timescale/timescaledb.git
synced 2025-05-18 03:23:37 +08:00
The table metrics_dist1 was only used by a single test and therefore should not be part of shared_setup but instead be created in the test that actually uses it. This reduces executed time of regresscheck-shared when that test is not run.
290 lines
15 KiB
SQL
290 lines
15 KiB
SQL
-- This file and its contents are licensed under the Timescale License.
|
|
-- Please see the included NOTICE for copyright information and
|
|
-- LICENSE-TIMESCALE for a copy of the license.
|
|
|
|
SET client_min_messages TO ERROR;
|
|
|
|
SET ROLE :ROLE_DEFAULT_PERM_USER;
|
|
|
|
-- this is a noop in our regression tests but allows us to use this
|
|
-- dataset more easily in other tests like the sqlsmith test
|
|
SELECT current_database() AS "TEST_DBNAME" \gset
|
|
|
|
CREATE SCHEMA test;
|
|
|
|
-- create normal hypertable with dropped columns, each chunk will have different attribute numbers
|
|
CREATE TABLE metrics(filler_1 int, filler_2 int, filler_3 int, time timestamptz NOT NULL, device_id int, v0 int, v1 int, v2 float, v3 float);
|
|
CREATE INDEX ON metrics(time DESC);
|
|
CREATE INDEX ON metrics(device_id,time DESC);
|
|
SELECT create_hypertable('metrics','time',create_default_indexes:=false);
|
|
|
|
ALTER TABLE metrics DROP COLUMN filler_1;
|
|
INSERT INTO metrics(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-01 0:00:00+0'::timestamptz,'2000-01-05 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics DROP COLUMN filler_2;
|
|
INSERT INTO metrics(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id-1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-06 0:00:00+0'::timestamptz,'2000-01-12 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics DROP COLUMN filler_3;
|
|
INSERT INTO metrics(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-13 0:00:00+0'::timestamptz,'2000-01-19 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ANALYZE metrics;
|
|
|
|
-- create identical hypertable with space partitioning
|
|
CREATE TABLE metrics_space(filler_1 int, filler_2 int, filler_3 int, time timestamptz NOT NULL, device_id int, v0 int, v1 int, v2 float, v3 float);
|
|
CREATE INDEX ON metrics_space(time);
|
|
CREATE INDEX ON metrics_space(device_id,time);
|
|
SELECT create_hypertable('metrics_space','time','device_id',3,create_default_indexes:=false);
|
|
|
|
ALTER TABLE metrics_space DROP COLUMN filler_1;
|
|
INSERT INTO metrics_space(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-01 0:00:00+0'::timestamptz,'2000-01-05 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_space DROP COLUMN filler_2;
|
|
INSERT INTO metrics_space(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-06 0:00:00+0'::timestamptz,'2000-01-12 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_space DROP COLUMN filler_3;
|
|
INSERT INTO metrics_space(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-13 0:00:00+0'::timestamptz,'2000-01-19 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ANALYZE metrics_space;
|
|
|
|
|
|
-- create hypertable with compression
|
|
CREATE TABLE metrics_compressed(filler_1 int, filler_2 int, filler_3 int, time timestamptz NOT NULL, device_id int, v0 int, v1 int, v2 float, v3 float);
|
|
CREATE INDEX ON metrics_compressed(time);
|
|
CREATE INDEX ON metrics_compressed(device_id,time);
|
|
SELECT create_hypertable('metrics_compressed','time',create_default_indexes:=false);
|
|
|
|
ALTER TABLE metrics_compressed DROP COLUMN filler_1;
|
|
INSERT INTO metrics_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-01 0:00:00+0'::timestamptz,'2000-01-05 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_compressed DROP COLUMN filler_2;
|
|
INSERT INTO metrics_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id-1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-06 0:00:00+0'::timestamptz,'2000-01-12 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_compressed DROP COLUMN filler_3;
|
|
INSERT INTO metrics_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-13 0:00:00+0'::timestamptz,'2000-01-19 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ANALYZE metrics_compressed;
|
|
|
|
-- compress chunks
|
|
ALTER TABLE metrics_compressed SET (timescaledb.compress, timescaledb.compress_orderby='time DESC', timescaledb.compress_segmentby='device_id');
|
|
SELECT compress_chunk(c.schema_name|| '.' || c.table_name)
|
|
FROM _timescaledb_catalog.chunk c, _timescaledb_catalog.hypertable ht where c.hypertable_id = ht.id and ht.table_name = 'metrics_compressed' and c.compressed_chunk_id IS NULL
|
|
ORDER BY c.table_name DESC;
|
|
|
|
-- create hypertable with space partitioning and compression
|
|
CREATE TABLE metrics_space_compressed(filler_1 int, filler_2 int, filler_3 int, time timestamptz NOT NULL, device_id int, v0 int, v1 int, v2 float, v3 float);
|
|
CREATE INDEX ON metrics_space_compressed(time);
|
|
CREATE INDEX ON metrics_space_compressed(device_id,time);
|
|
SELECT create_hypertable('metrics_space_compressed','time','device_id',3,create_default_indexes:=false);
|
|
|
|
ALTER TABLE metrics_space_compressed DROP COLUMN filler_1;
|
|
INSERT INTO metrics_space_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-01 0:00:00+0'::timestamptz,'2000-01-05 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_space_compressed DROP COLUMN filler_2;
|
|
INSERT INTO metrics_space_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-06 0:00:00+0'::timestamptz,'2000-01-12 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_space_compressed DROP COLUMN filler_3;
|
|
INSERT INTO metrics_space_compressed(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-13 0:00:00+0'::timestamptz,'2000-01-19 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ANALYZE metrics_space_compressed;
|
|
|
|
-- compress chunks
|
|
ALTER TABLE metrics_space_compressed SET (timescaledb.compress, timescaledb.compress_orderby='time DESC', timescaledb.compress_segmentby='device_id');
|
|
SELECT compress_chunk(c.schema_name|| '.' || c.table_name)
|
|
FROM _timescaledb_catalog.chunk c, _timescaledb_catalog.hypertable ht where c.hypertable_id = ht.id and ht.table_name = 'metrics_space_compressed' and c.compressed_chunk_id IS NULL
|
|
ORDER BY c.table_name DESC;
|
|
|
|
RESET ROLE;
|
|
|
|
-- Add data nodes
|
|
SELECT * FROM add_data_node('data_node_1', host => 'localhost', database => 'data_node_1');
|
|
SELECT * FROM add_data_node('data_node_2', host => 'localhost', database => 'data_node_2');
|
|
SELECT * FROM add_data_node('data_node_3', host => 'localhost', database => 'data_node_3');
|
|
GRANT USAGE ON FOREIGN SERVER data_node_1, data_node_2, data_node_3 TO PUBLIC;
|
|
|
|
-- Import testsupport.sql file to data nodes
|
|
\unset ECHO
|
|
\o /dev/null
|
|
\c data_node_1
|
|
SET client_min_messages TO ERROR;
|
|
\ir :TEST_SUPPORT_FILE
|
|
\c data_node_2
|
|
SET client_min_messages TO ERROR;
|
|
\ir :TEST_SUPPORT_FILE
|
|
\c data_node_3
|
|
SET client_min_messages TO ERROR;
|
|
\ir :TEST_SUPPORT_FILE
|
|
\c :TEST_DBNAME
|
|
SET client_min_messages TO ERROR;
|
|
\ir :TEST_SUPPORT_FILE
|
|
\o
|
|
\set ECHO all
|
|
|
|
SET ROLE :ROLE_DEFAULT_PERM_USER;
|
|
|
|
CREATE TABLE metrics_dist(filler_1 int, filler_2 int, filler_3 int, time timestamptz NOT NULL, device_id int, v0 int, v1 int, v2 float, v3 float);
|
|
SELECT create_distributed_hypertable('metrics_dist','time','device_id',3);
|
|
|
|
ALTER TABLE metrics_dist DROP COLUMN filler_1;
|
|
INSERT INTO metrics_dist(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-01 0:00:00+0'::timestamptz,'2000-01-05 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_dist DROP COLUMN filler_2;
|
|
INSERT INTO metrics_dist(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-06 0:00:00+0'::timestamptz,'2000-01-12 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ALTER TABLE metrics_dist DROP COLUMN filler_3;
|
|
INSERT INTO metrics_dist(time,device_id,v0,v1,v2,v3) SELECT time, device_id, device_id+1, device_id + 2, device_id + 0.5, NULL FROM generate_series('2000-01-13 0:00:00+0'::timestamptz,'2000-01-19 23:55:00+0','2m') gtime(time), generate_series(1,5,1) gdevice(device_id);
|
|
ANALYZE metrics_dist;
|
|
|
|
-- Tables for gapfill and distributed gapfill tests
|
|
|
|
CREATE TABLE gapfill_plan_test(time timestamptz NOT NULL, value float);
|
|
SELECT create_hypertable('gapfill_plan_test','time',chunk_time_interval=>'4 weeks'::interval);
|
|
INSERT INTO gapfill_plan_test SELECT generate_series('2018-01-01'::timestamptz,'2018-04-01'::timestamptz,'1m'::interval), 1.0;
|
|
|
|
CREATE TABLE metrics_int(
|
|
time int NOT NULL,
|
|
device_id int,
|
|
sensor_id int,
|
|
value float);
|
|
INSERT INTO metrics_int VALUES
|
|
(-100,1,1,0.0),
|
|
(-100,1,2,-100.0),
|
|
(0,1,1,5.0),
|
|
(5,1,2,10.0),
|
|
(100,1,1,0.0),
|
|
(100,1,2,-100.0);
|
|
|
|
CREATE TABLE devices(device_id INT, name TEXT);
|
|
INSERT INTO devices VALUES (1,'Device 1'),(2,'Device 2'),(3,'Device 3');
|
|
|
|
CREATE TABLE sensors(sensor_id INT, name TEXT);
|
|
INSERT INTO sensors VALUES (1,'Sensor 1'),(2,'Sensor 2'),(3,'Sensor 3');
|
|
|
|
CREATE TABLE insert_test(id INT);
|
|
INSERT INTO insert_test SELECT time_bucket_gapfill(1,time,1,5) FROM (VALUES (1),(2)) v(time) GROUP BY 1 ORDER BY 1;
|
|
|
|
CREATE TABLE metrics_tstz(time timestamptz, device_id INT, v1 float, v2 int);
|
|
SELECT create_hypertable('metrics_tstz','time');
|
|
INSERT INTO metrics_tstz VALUES
|
|
(timestamptz '2018-01-01 05:00:00 PST', 1, 0.5, 10),
|
|
(timestamptz '2018-01-01 05:00:00 PST', 2, 0.7, 20),
|
|
(timestamptz '2018-01-01 05:00:00 PST', 3, 0.9, 30),
|
|
(timestamptz '2018-01-01 07:00:00 PST', 1, 0.0, 0),
|
|
(timestamptz '2018-01-01 07:00:00 PST', 2, 1.4, 40),
|
|
(timestamptz '2018-01-01 07:00:00 PST', 3, 0.9, 30)
|
|
;
|
|
|
|
CREATE TABLE conditions(
|
|
time timestamptz NOT NULL,
|
|
device int,
|
|
value float
|
|
);
|
|
SELECT * FROM create_hypertable('conditions', 'time');
|
|
INSERT INTO conditions VALUES
|
|
('2017-01-01 06:01', 1, 1.2),
|
|
('2017-01-01 09:11', 3, 4.3),
|
|
('2017-01-01 08:01', 1, 7.3),
|
|
('2017-01-02 08:01', 2, 0.23),
|
|
('2018-07-02 08:01', 87, 0.0),
|
|
('2018-07-01 06:01', 13, 3.1),
|
|
('2018-07-01 09:11', 90, 10303.12),
|
|
('2018-07-01 08:01', 29, 64);
|
|
|
|
CREATE TABLE conditions_dist(
|
|
time timestamptz NOT NULL,
|
|
device int,
|
|
value float
|
|
);
|
|
SELECT * FROM create_distributed_hypertable('conditions_dist', 'time', 'device', 3);
|
|
INSERT INTO conditions_dist VALUES
|
|
('2017-01-01 06:01', 1, 1.2),
|
|
('2017-01-01 09:11', 3, 4.3),
|
|
('2017-01-01 08:01', 1, 7.3),
|
|
('2017-01-02 08:01', 2, 0.23),
|
|
('2018-07-02 08:01', 87, 0.0),
|
|
('2018-07-01 06:01', 13, 3.1),
|
|
('2018-07-01 09:11', 90, 10303.12),
|
|
('2018-07-01 08:01', 29, 64);
|
|
|
|
CREATE TABLE metrics_int_dist(
|
|
time int NOT NULL,
|
|
device_id int,
|
|
sensor_id int,
|
|
value float);
|
|
SELECT create_distributed_hypertable('metrics_int_dist','time','device_id',chunk_time_interval => 50);
|
|
INSERT INTO metrics_int_dist VALUES
|
|
(-100,1,1,0.0),
|
|
(-100,1,2,-100.0),
|
|
(0,1,1,5.0),
|
|
(5,1,2,10.0),
|
|
(100,1,1,0.0),
|
|
(100,1,2,-100.0);
|
|
|
|
CREATE TABLE conditions_dist1(
|
|
time timestamptz NOT NULL,
|
|
device int,
|
|
value float
|
|
);
|
|
SELECT * FROM create_distributed_hypertable('conditions_dist1', 'time', 'device', 1,
|
|
data_nodes => '{"data_node_1"}');
|
|
INSERT INTO conditions_dist1 VALUES
|
|
('2017-01-01 06:01', 1, 1.2),
|
|
('2017-01-01 09:11', 3, 4.3),
|
|
('2017-01-01 08:01', 1, 7.3),
|
|
('2017-01-02 08:01', 2, 0.23),
|
|
('2018-07-02 08:01', 87, 0.0),
|
|
('2018-07-01 06:01', 13, 3.1),
|
|
('2018-07-01 09:11', 90, 10303.12),
|
|
('2018-07-01 08:01', 29, 64);
|
|
|
|
CREATE TABLE metrics_int_dist1(
|
|
time int NOT NULL,
|
|
device_id int,
|
|
sensor_id int,
|
|
value float);
|
|
SELECT create_distributed_hypertable('metrics_int_dist1', 'time', 'device_id', chunk_time_interval => 50,
|
|
data_nodes => '{"data_node_1"}');
|
|
INSERT INTO metrics_int_dist1 VALUES
|
|
(-100,1,1,0.0),
|
|
(-100,1,2,-100.0),
|
|
(0,1,1,5.0),
|
|
(5,1,2,10.0),
|
|
(100,1,1,0.0),
|
|
(100,1,2,-100.0);
|
|
|
|
-- Create distributed hypertable for copy chunk test. Need to have
|
|
-- a space-dimension to have more predictible chunk placement.
|
|
CREATE TABLE dist_chunk_copy (
|
|
time timestamptz NOT NULL,
|
|
device integer,
|
|
value integer);
|
|
|
|
SELECT create_distributed_hypertable('dist_chunk_copy', 'time', 'device', replication_factor => 2);
|
|
ALTER TABLE dist_chunk_copy SET (timescaledb.compress);
|
|
|
|
SELECT setseed(0);
|
|
INSERT INTO dist_chunk_copy
|
|
SELECT t, ceil(_timescaledb_internal.get_partition_hash(t)::int % 5), random() * 20
|
|
FROM generate_series('2020-01-01'::timestamp, '2020-01-25'::timestamp, '1d') t;
|
|
|
|
-- Compress a few chunks of this dist_chunk_copy hypertable
|
|
SELECT compress_chunk('_timescaledb_internal._dist_hyper_15_68_chunk');
|
|
SELECT compress_chunk('_timescaledb_internal._dist_hyper_15_70_chunk');
|
|
|
|
CREATE TABLE mvcp_hyper (time bigint NOT NULL, value integer);
|
|
SELECT table_name FROM create_distributed_hypertable('mvcp_hyper', 'time',
|
|
chunk_time_interval => 200, replication_factor => 3);
|
|
|
|
-- Enable compression so that we can test dropping of compressed chunks
|
|
ALTER TABLE mvcp_hyper SET (timescaledb.compress, timescaledb.compress_orderby='time DESC');
|
|
|
|
INSERT INTO mvcp_hyper SELECT g, g FROM generate_series(0,1000) g;
|
|
|
|
|
|
-- Tables for the DISTINCT ON pushdown test
|
|
create table distinct_on_hypertable(ts timestamp, id int, val numeric);
|
|
select create_hypertable('distinct_on_hypertable', 'ts');
|
|
insert into distinct_on_hypertable select '2021-01-01 01:01:01'::timestamp + x * interval '1 second' ts,
|
|
mod(x, 4) id, r val
|
|
from (select random() r, x from generate_series(1, 10000) x) tt
|
|
order by r;
|
|
|
|
create table distinct_on_distributed(ts timestamp, id int, val numeric);
|
|
select create_distributed_hypertable('distinct_on_distributed', 'ts');
|
|
insert into distinct_on_distributed select * from distinct_on_hypertable;
|
|
|
|
-- Distributed table with custom type that has no binary output
|
|
CREATE TABLE disttable_with_ct(time timestamptz, txn_id rxid, val float, info text);
|
|
SELECT * FROM create_hypertable('disttable_with_ct', 'time', replication_factor => 1);
|
|
|
|
-- Insert data with custom type
|
|
INSERT INTO disttable_with_ct VALUES
|
|
('2019-01-01 01:01', 'ts-1-10-20-30', 1.1, 'a'),
|
|
('2019-01-01 01:02', 'ts-1-11-20-30', 2.0, repeat('abc', 1000000)); -- TOAST
|
|
|