## Using our Sample Datasets ### Available samples We have created several sample datasets (using `pg_dump`) to help you get started using TimescaleDB. These datasets vary in database size, number of time intervals, and number of values for the partition field. (Note that these dataset backups already include our time-series database, so you won't need to manually install our extension, nor run the setup scripts, etc.) **Device ops**: These datasets are designed to represent metrics (e.g. CPU, memory, network) collected from mobile devices. (Click on the name to download.) 1. [`devices_small`](https://timescaledata.blob.core.windows.net/datasets/devices_small.bak.tar.gz) - 1,000 devices recorded over 1,000 time intervals 1. [`devices_med`](https://timescaledata.blob.core.windows.net/datasets/devices_med.bak.tar.gz) - 5,000 devices recorded over 2,000 time intervals 1. [`devices_big`](https://timescaledata.blob.core.windows.net/datasets/devices_big.bak.tar.gz) - 3,000 devices recorded over 10,000 time intervals For more details and example usage, see [In-depth: Device ops datasets](#in-depth-devices). **Weather**: These datasets are designed to represent temperature and humidity data from a variety of locations. (Click on the name to download.) 1. [`weather_small`](https://timescaledata.blob.core.windows.net/datasets/weather_small.bak.tar.gz) - 1,000 locations over 1,000 two-minute intervals 1. [`weather_med`](https://timescaledata.blob.core.windows.net/datasets/weather_med.bak.tar.gz) - 1,000 locations over 15,000 two-minute intervals 1. [`weather_big`](https://timescaledata.blob.core.windows.net/datasets/weather_big.bak.tar.gz) - 2,000 locations over 20,000 two-minute intervals For more details and example usage, see [In-depth: Weather datasets](#in-depth-weather). ### Importing Data is easily imported using the standard way of restoring `pg_dump` backups. Briefly the steps are: 1. Unzip the archive, 1. Create a database for the data (using the same name as the dataset) 1. Import the data via `psql` Each of our archives is named `[dataset_name].bak.tar.gz`, so if you are using dataset `devices_small`, the commands are: ```bash # (1) unzip the archive tar -xvzf devices_small.bak.tar.gz # (2) create a database with the same name psql -U postgres -h localhost -c 'CREATE DATABASE devices_small;' # (3) import data psql -U postgres -d devices_small -h localhost < devices_small.bak ``` The data is now ready for you to use. ```bash # To access your database (e.g., devices_small) psql -U postgres -h localhost -d devices_small ``` ### In-depth: Device ops datasets After importing one of these datasets (`devices_small`, `devices_med`, `devices_big`), you will find a plain Postgres table called `device_info` and a hypertable called `readings`. The `device_info` table has (static) metadata about each device, such as the OS name and manufacturer. The `readings` hypertable tracks data sent from each device, e.g. CPU activity, memory levels, etc. Because hypertables are exposed as a single table, you can query them and join them with the metadata as you would normal SQL tables (see Example Queries below). #### Schemas ```sql Table "public.device_info" Column | Type | Modifiers -------------+------+----------- device_id | text | api_version | text | manufacturer | text | model | text | os_name | text | ``` ```sql Table "public.readings" Column | Type | Modifiers --------------------+------------------+----------- time | bigint | device_id | text | battery_level | double precision | battery_status | text | battery_temperature | double precision | bssid | text | cpu_avg_1min | double precision | cpu_avg_5min | double precision | cpu_avg_15min | double precision | mem_free | double precision | mem_used | double precision | rssi | double precision | ssid | text | Indexes: "readings_device_id_time_idx" btree (device_id, "time" DESC) "readings_time_idx" btree ("time" DESC) ``` #### Example Queries _Note: Uses dataset_ `devices_med` **10 most recent battery temperature readings for charging devices** ```sql SELECT time, device_id, battery_temperature FROM readings WHERE battery_status = 'charging' ORDER BY time DESC LIMIT 10; time | device_id | battery_temperature -----------------------+------------+--------------------- 2016-11-15 23:39:30-05 | demo000000 | 101 2016-11-15 23:39:30-05 | demo000016 | 97 2016-11-15 23:39:30-05 | demo000019 | 96.3 2016-11-15 23:39:30-05 | demo000045 | 95.9 2016-11-15 23:39:30-05 | demo000048 | 97.1 2016-11-15 23:39:30-05 | demo000049 | 101.7 2016-11-15 23:39:30-05 | demo000070 | 95.9 2016-11-15 23:39:30-05 | demo000074 | 95.8 2016-11-15 23:39:30-05 | demo000089 | 100.5 2016-11-15 23:39:30-05 | demo000094 | 100.6 (10 rows) ``` **Busiest devices (1 min avg) whose battery level is below 33% and is not charging** ```sql SELECT time, readings.device_id, cpu_avg_1min, battery_level, battery_status, device_info.model FROM readings JOIN device_info ON readings.device_id = device_info.device_id WHERE battery_level < 33 AND battery_status = 'discharging' ORDER BY cpu_avg_1min DESC, time DESC LIMIT 5; time | device_id | cpu_avg_1min | battery_level | battery_status | model -----------------------+------------+--------------+---------------+----------------+--------- 2016-11-15 22:51:00-05 | demo004320 | 98.99 | 32 | discharging | pinto 2016-11-15 21:16:30-05 | demo001647 | 98.99 | 30 | discharging | pinto 2016-11-15 19:13:00-05 | demo003758 | 98.99 | 30 | discharging | focus 2016-11-15 17:09:00-05 | demo004924 | 98.99 | 15 | discharging | mustang 2016-11-15 12:35:00-05 | demo002196 | 98.99 | 27 | discharging | pinto (5 rows) ``` ```sql SELECT date_trunc('hour', time) "hour", min(battery_level) min_battery_level, max(battery_level) max_battery_level FROM readings r WHERE r.device_id IN ( SELECT DISTINCT device_id FROM device_info WHERE model = 'pinto' OR model = 'focus' ) GROUP BY "hour" ORDER BY "hour" ASC LIMIT 12; hour | min_battery_level | max_battery_level -----------------------+-------------------+------------------- 2016-11-15 07:00:00-05 | 19 | 100 2016-11-15 08:00:00-05 | 10 | 100 2016-11-15 09:00:00-05 | 6 | 100 2016-11-15 10:00:00-05 | 6 | 100 2016-11-15 11:00:00-05 | 6 | 100 2016-11-15 12:00:00-05 | 6 | 100 2016-11-15 13:00:00-05 | 6 | 100 2016-11-15 14:00:00-05 | 6 | 100 2016-11-15 15:00:00-05 | 6 | 100 2016-11-15 16:00:00-05 | 6 | 100 2016-11-15 17:00:00-05 | 6 | 100 2016-11-15 18:00:00-05 | 6 | 100 (12 rows) ``` ** ### In-depth: Weather datasets After importing one of these datasets (`weather_small`, `weather_med`, `weather_big`), you will find a plain Postgres table called `locations` and a hypertable called `conditions`. The `locations` table has metadata about each of the locations, such as its name and environmental type. The `conditions` hypertable tracks readings of temperature and humidity from those locations. Because hypertables are exposed as a single table, you can query them and join them with the metadata as you would normal SQL tables (see Example Queries below). #### Schemas ```sql Table "public.locations" Column | Type | Modifiers ------------+------+----------- device_id | text | location | text | environment | text | ``` ```sql Table "public.conditions" Column | Type | Modifiers ------------+--------------------------+----------- time | timestamp with time zone | not null device_id | text | temperature | double precision | humidity | double precision | Indexes: "conditions_device_id_time_idx" btree (device_id, "time" DESC) "conditions_time_idx" btree ("time" DESC) ``` #### Example Queries _Note: Uses dataset_ `weather_med` **Last 10 readings** ```sql SELECT * FROM conditions c ORDER BY time DESC LIMIT 10; time | device_id | temperature | humidity -----------------------+--------------------+--------------------+-------------------- 2016-12-06 02:58:00-05 | weather-pro-000000 | 33.899999999999885 | 52.799999999999955 2016-12-06 02:58:00-05 | weather-pro-000001 | 61.50000000000002 | 48.400000000000006 2016-12-06 02:58:00-05 | weather-pro-000002 | 34.599999999999895 | 49.399999999999906 2016-12-06 02:58:00-05 | weather-pro-000003 | 82.80000000000041 | 82.30000000000061 2016-12-06 02:58:00-05 | weather-pro-000004 | 85.00000000000034 | 76.00000000000013 2016-12-06 02:58:00-05 | weather-pro-000005 | 60.2 | 48.29999999999989 2016-12-06 02:58:00-05 | weather-pro-000006 | 64 | 52.899999999999956 2016-12-06 02:58:00-05 | weather-pro-000007 | 83.10000000000039 | 83.00000000000057 2016-12-06 02:58:00-05 | weather-pro-000008 | 85.00000000000034 | 95.89999999999998 2016-12-06 02:58:00-05 | weather-pro-000009 | 83.30000000000044 | 92.19999999999995 (10 rows) ``` **Last 10 readings from 'outside' locations** ```sql SELECT time, c.device_id, location, trunc(temperature, 2) temperature, trunc(humidity, 2) humidity FROM conditions c INNER JOIN locations l ON c.device_id = l.device_id WHERE l.environment = 'outside' ORDER BY time DESC LIMIT 10; time | device_id | location | temperature | humidity -----------------------+--------------------+---------------+-------------+---------- 2016-12-06 02:58:00-05 | weather-pro-000000 | arctic-000000 | 33.89 | 52.79 2016-12-06 02:58:00-05 | weather-pro-000002 | arctic-000001 | 34.59 | 49.39 2016-12-06 02:58:00-05 | weather-pro-000003 | field-000000 | 82.80 | 82.30 2016-12-06 02:58:00-05 | weather-pro-000004 | swamp-000000 | 85.00 | 76.00 2016-12-06 02:58:00-05 | weather-pro-000007 | field-000001 | 83.10 | 83.00 2016-12-06 02:58:00-05 | weather-pro-000008 | swamp-000001 | 85.00 | 95.89 2016-12-06 02:58:00-05 | weather-pro-000009 | swamp-000002 | 83.30 | 92.19 2016-12-06 02:58:00-05 | weather-pro-000011 | swamp-000003 | 85.20 | 82.79 2016-12-06 02:58:00-05 | weather-pro-000013 | arctic-000002 | 35.49 | 50.69 2016-12-06 02:58:00-05 | weather-pro-000018 | swamp-000004 | 83.40 | 60.60 (10 rows) ``` **Hourly average, min, and max temperatures for "field" locations** ```sql SELECT date_trunc('hour', time) "hour", trunc(avg(temperature), 2) avg_temp, trunc(min(temperature), 2) min_temp, trunc(max(temperature), 2) max_temp FROM conditions c WHERE c.device_id IN ( SELECT device_id FROM locations WHERE location LIKE 'field-%' ) GROUP BY "hour" ORDER BY "hour" ASC LIMIT 24; hour | avg_temp | min_temp | max_temp -----------------------+----------+----------+---------- 2016-11-15 07:00:00-05 | 73.24 | 68.00 | 78.89 2016-11-15 08:00:00-05 | 74.25 | 69.09 | 80.09 2016-11-15 09:00:00-05 | 75.24 | 69.59 | 81.09 2016-11-15 10:00:00-05 | 76.25 | 70.69 | 82.39 2016-11-15 11:00:00-05 | 77.26 | 71.29 | 83.59 2016-11-15 12:00:00-05 | 78.26 | 72.39 | 84.79 2016-11-15 13:00:00-05 | 79.24 | 73.19 | 85.79 2016-11-15 14:00:00-05 | 80.22 | 73.69 | 86.79 2016-11-15 15:00:00-05 | 81.22 | 74.49 | 87.59 2016-11-15 16:00:00-05 | 82.24 | 75.29 | 88.59 2016-11-15 17:00:00-05 | 83.22 | 76.59 | 89.39 2016-11-15 18:00:00-05 | 84.23 | 77.59 | 90.00 2016-11-15 19:00:00-05 | 85.22 | 78.39 | 90.00 2016-11-15 20:00:00-05 | 85.16 | 78.29 | 90.00 2016-11-15 21:00:00-05 | 84.16 | 77.49 | 89.59 2016-11-15 22:00:00-05 | 83.16 | 76.19 | 88.59 2016-11-15 23:00:00-05 | 82.15 | 75.09 | 87.70 2016-11-16 00:00:00-05 | 81.15 | 74.09 | 86.70 2016-11-16 01:00:00-05 | 80.15 | 72.99 | 85.90 2016-11-16 02:00:00-05 | 79.14 | 71.89 | 84.80 2016-11-16 03:00:00-05 | 78.13 | 70.69 | 83.69 2016-11-16 04:00:00-05 | 77.15 | 69.39 | 82.80 2016-11-16 05:00:00-05 | 77.16 | 69.39 | 83.60 2016-11-16 06:00:00-05 | 78.13 | 70.59 | 84.90 (24 rows) ```