diff --git a/.gitignore b/.gitignore
index 76b3d2861..def74a1e9 100644
--- a/.gitignore
+++ b/.gitignore
@@ -48,6 +48,7 @@ models-mnt
 /llama-bench
 /llava-cli
 /lookahead
+/lookup
 /main
 /metal
 /perplexity
diff --git a/Makefile b/Makefile
index 6a998091b..cb5a4e948 100644
--- a/Makefile
+++ b/Makefile
@@ -2,7 +2,7 @@
 BUILD_TARGETS = \
 	main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
 	simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search  \
-	speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead tests/test-c.o
+	speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup tests/test-c.o
 
 # Binaries only useful for tests
 TEST_TARGETS = \
@@ -664,6 +664,9 @@ parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
 lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
 	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 
+lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
+	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
+
 ifdef LLAMA_METAL
 metal: examples/metal/metal.cpp ggml.o $(OBJS)
 	$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
diff --git a/common/common.h b/common/common.h
index e87ce1133..9659aa045 100644
--- a/common/common.h
+++ b/common/common.h
@@ -51,7 +51,7 @@ struct gpt_params {
     int32_t n_ctx                           = 512;   // context size
     int32_t n_batch                         = 512;   // batch size for prompt processing (must be >=32 to use BLAS)
     int32_t n_keep                          = 0;     // number of tokens to keep from initial prompt
-    int32_t n_draft                         = 16;    // number of tokens to draft during speculative decoding
+    int32_t n_draft                         = 8;     // number of tokens to draft during speculative decoding
     int32_t n_chunks                        = -1;    // max number of chunks to process (-1 = unlimited)
     int32_t n_parallel                      = 1;     // number of parallel sequences to decode
     int32_t n_sequences                     = 1;     // number of sequences to decode
@@ -240,3 +240,4 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
 
 // Dump the KV cache view showing individual sequences in each cell (long output).
 void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
+
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index 6744944fd..4cc13d6e9 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -33,6 +33,7 @@ else()
     add_subdirectory(simple)
     add_subdirectory(speculative)
     add_subdirectory(lookahead)
+    add_subdirectory(lookup)
     add_subdirectory(train-text-from-scratch)
     if (LLAMA_METAL)
         add_subdirectory(metal)
diff --git a/examples/lookup/CMakeLists.txt b/examples/lookup/CMakeLists.txt
new file mode 100644
index 000000000..c060b8f56
--- /dev/null
+++ b/examples/lookup/CMakeLists.txt
@@ -0,0 +1,5 @@
+set(TARGET lookup)
+add_executable(${TARGET} lookup.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/lookup/README.md b/examples/lookup/README.md
new file mode 100644
index 000000000..5bfb0de93
--- /dev/null
+++ b/examples/lookup/README.md
@@ -0,0 +1,13 @@
+# llama.cpp/examples/lookup
+
+Demonstration of Prompt Lookup Decoding
+
+https://github.com/apoorvumang/prompt-lookup-decoding
+
+The key parameters for lookup decoding are `ngram_min`, `ngram_max` and `n_draft`. The first two determine the size of the ngrams to search for in the prompt for a match. The latter specifies how many subsequent tokens to draft if a match is found.
+
+More info:
+
+https://github.com/ggerganov/llama.cpp/pull/4484
+https://github.com/ggerganov/llama.cpp/issues/4226
+
diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp
new file mode 100644
index 000000000..d8de7dd38
--- /dev/null
+++ b/examples/lookup/lookup.cpp
@@ -0,0 +1,230 @@
+#include "common.h"
+#include "llama.h"
+
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+int main(int argc, char ** argv){
+    gpt_params params;
+
+    if (!gpt_params_parse(argc, argv, params)) {
+        return 1;
+    }
+
+    // max/min n-grams size to search for in prompt
+    const int ngram_max = 4;
+    const int ngram_min = 1;
+
+    // length of the candidate / draft sequence, if match is found
+    const int n_draft = params.n_draft;
+
+    const bool dump_kv_cache = params.dump_kv_cache;
+
+#ifndef LOG_DISABLE_LOGS
+    log_set_target(log_filename_generator("lookup", "log"));
+    LOG_TEE("Log start\n");
+    log_dump_cmdline(argc, argv);
+#endif // LOG_DISABLE_LOGS
+
+    // init llama.cpp
+    llama_backend_init(params.numa);
+
+    llama_model * model = NULL;
+    llama_context * ctx = NULL;
+
+    // load the model
+    std::tie(model, ctx) = llama_init_from_gpt_params(params);
+
+    // tokenize the prompt
+    const bool add_bos = llama_should_add_bos_token(model);
+    LOG("add_bos tgt: %d\n", add_bos);
+
+    std::vector<llama_token> inp;
+    inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
+
+    const int max_context_size     = llama_n_ctx(ctx);
+    const int max_tokens_list_size = max_context_size - 4;
+
+    if ((int) inp.size() > max_tokens_list_size) {
+        fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
+        return 1;
+    }
+
+    fprintf(stderr, "\n\n");
+
+    for (auto id : inp) {
+        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
+    }
+
+    fflush(stderr);
+
+    const int n_input = inp.size();
+
+    const auto t_enc_start = ggml_time_us();
+
+    llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
+    llama_decode(ctx, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
+
+    const auto t_enc_end = ggml_time_us();
+
+    int n_predict = 0;
+    int n_drafted = 0;
+    int n_accept  = 0;
+
+    int n_past = inp.size();
+
+    bool has_eos = false;
+
+    struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
+
+    std::vector<llama_token> draft;
+
+    llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
+
+    // debug
+    struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
+
+    const auto t_dec_start = ggml_time_us();
+
+    while (true) {
+        // debug
+        if (dump_kv_cache) {
+            llama_kv_cache_view_update(ctx, &kvc_view);
+            dump_kv_cache_view_seqs(kvc_view, 40);
+        }
+
+        // print current draft sequence
+        LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
+
+        int i_dft = 0;
+        while (true) {
+            // sample from the target model
+            llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
+
+            llama_sampling_accept(ctx_sampling, ctx, id, true);
+
+            const std::string token_str = llama_token_to_piece(ctx, id);
+
+            if (!params.use_color) {
+                printf("%s", token_str.c_str());
+            }
+
+            if (id == llama_token_eos(model)) {
+                has_eos = true;
+            }
+
+            ++n_predict;
+
+            // check if the target token matches the draft
+            if (i_dft < (int) draft.size() && id == draft[i_dft]) {
+                LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
+                ++n_accept;
+                ++n_past;
+                ++i_dft;
+                inp.push_back(id);
+
+                if (params.use_color) {
+                    // color accepted draft token
+                    printf("\033[34m%s\033[0m", token_str.c_str());
+                    fflush(stdout);
+                }
+                continue;
+            }
+
+            if (params.use_color) {
+                printf("%s", token_str.c_str());
+            }
+            fflush(stdout);
+
+
+            LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
+
+            draft.clear();
+            draft.push_back(id);
+            inp.push_back(id);
+            break;
+        }
+
+        if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
+            break;
+        }
+
+        // KV cache management
+        // clean the cache of draft tokens that weren't accepted
+        llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
+
+        llama_batch_clear(batch_tgt);
+        llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
+
+        // generate n_pred tokens through prompt lookup
+        auto prompt_lookup = [&]() -> void {
+            int inp_size = inp.size();
+            for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
+                const llama_token * ngram = &inp[inp_size - ngram_size];
+
+                for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
+                    bool match = true;
+                    for (int j = 0; j < ngram_size; ++j) {
+                        if (inp[i + j] != ngram[j]) {
+                            match = false;
+                            break;
+                        }
+                    }
+
+                    if (match) {
+                        const int startIdx = i + ngram_size;
+                        const int endIdx = startIdx + n_draft;
+                        if (endIdx < inp_size) {
+                            for (int j = startIdx; j < endIdx; ++j) {
+                                LOG(" - draft candidate %d: %d\n", j, inp[j]);
+                                draft.push_back(inp[j]);
+                                llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
+                                ++n_drafted;
+                            }
+                            return;
+                        }
+                    }
+                }
+            }
+            return;
+        };
+
+        prompt_lookup();
+
+        llama_decode(ctx, batch_tgt);
+        ++n_past;
+
+        draft.erase(draft.begin());
+    }
+
+    auto t_dec_end = ggml_time_us();
+
+    LOG_TEE("\n\n");
+
+    LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
+    LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
+
+    LOG_TEE("\n");
+    LOG_TEE("n_draft   = %d\n", n_draft);
+    LOG_TEE("n_predict = %d\n", n_predict);
+    LOG_TEE("n_drafted = %d\n", n_drafted);
+    LOG_TEE("n_accept  = %d\n", n_accept);
+    LOG_TEE("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);
+
+    LOG_TEE("\ntarget:\n");
+    llama_print_timings(ctx);
+
+    llama_sampling_free(ctx_sampling);
+    llama_batch_free(batch_tgt);
+
+    llama_free(ctx);
+    llama_free_model(model);
+
+    llama_backend_free();
+
+    fprintf(stderr, "\n\n");
+
+    return 0;
+}