diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index 8c338534d..7ac0e5f6e 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -340,6 +340,36 @@ jobs:
           cd build
           ctest -L main --verbose
 
+  ubuntu-latest-cmake-rpc:
+    runs-on: ubuntu-latest
+
+    continue-on-error: true
+
+    steps:
+      - name: Clone
+        id: checkout
+        uses: actions/checkout@v4
+
+      - name: Dependencies
+        id: depends
+        run: |
+          sudo apt-get update
+          sudo apt-get install build-essential
+
+      - name: Build
+        id: cmake_build
+        run: |
+          mkdir build
+          cd build
+          cmake -DLLAMA_RPC=ON ..
+          cmake --build . --config Release -j $(nproc)
+
+      - name: Test
+        id: cmake_test
+        run: |
+          cd build
+          ctest -L main --verbose
+
   ubuntu-22-cmake-vulkan:
     runs-on: ubuntu-22.04
 
@@ -663,6 +693,8 @@ jobs:
     strategy:
       matrix:
         include:
+          - build: 'rpc'
+            defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_RPC=ON -DBUILD_SHARED_LIBS=ON'
           - build: 'noavx'
             defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
           - build: 'avx2'
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 1c3b5c8e4..feb6f39d0 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -123,6 +123,7 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
 set(LLAMA_METAL_STD "" CACHE STRING          "llama: metal standard version (-std flag)")
 option(LLAMA_KOMPUTE                         "llama: use Kompute"                               OFF)
 option(LLAMA_MPI                             "llama: use MPI"                                   OFF)
+option(LLAMA_RPC                             "llama: use RPC"                                   OFF)
 option(LLAMA_QKK_64                          "llama: use super-block size of 64 for k-quants"   OFF)
 option(LLAMA_SYCL                            "llama: use SYCL"                                  OFF)
 option(LLAMA_SYCL_F16                        "llama: use 16 bit floats for sycl calculations"   OFF)
@@ -494,6 +495,17 @@ if (LLAMA_MPI)
     endif()
 endif()
 
+if (LLAMA_RPC)
+    add_compile_definitions(GGML_USE_RPC)
+
+    if (WIN32)
+        set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ws2_32)
+    endif()
+
+    set(GGML_HEADERS_RPC ggml-rpc.h)
+    set(GGML_SOURCES_RPC ggml-rpc.cpp)
+endif()
+
 if (LLAMA_CLBLAST)
     find_package(CLBlast)
     if (CLBlast_FOUND)
@@ -1176,6 +1188,7 @@ add_library(ggml OBJECT
             ${GGML_SOURCES_OPENCL}    ${GGML_HEADERS_OPENCL}
             ${GGML_SOURCES_METAL}     ${GGML_HEADERS_METAL}
             ${GGML_SOURCES_MPI}       ${GGML_HEADERS_MPI}
+            ${GGML_SOURCES_RPC}       ${GGML_HEADERS_RPC}
             ${GGML_SOURCES_EXTRA}     ${GGML_HEADERS_EXTRA}
             ${GGML_SOURCES_SYCL}      ${GGML_HEADERS_SYCL}
             ${GGML_SOURCES_KOMPUTE}   ${GGML_HEADERS_KOMPUTE}
diff --git a/common/common.cpp b/common/common.cpp
index ba1ecf0e5..96130ad54 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -1060,6 +1060,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
 #endif // GGML_USE_CUDA_SYCL_VULKAN
         return true;
     }
+    if (arg == "--rpc") {
+        if (++i >= argc) {
+            invalid_param = true;
+            return true;
+        }
+        params.rpc_servers = argv[i];
+        return true;
+    }
     if (arg == "--no-mmap") {
         params.use_mmap = false;
         return true;
@@ -1557,6 +1565,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
         printf("  -mg i, --main-gpu i   the GPU to use for the model (with split-mode = none),\n");
         printf("                        or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
     }
+    printf("  --rpc SERVERS         comma separated list of RPC servers\n");
     printf("  --verbose-prompt      print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
     printf("  --no-display-prompt   don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
     printf("  -gan N, --grp-attn-n N\n");
@@ -1830,6 +1839,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
     if (params.n_gpu_layers != -1) {
         mparams.n_gpu_layers = params.n_gpu_layers;
     }
+    mparams.rpc_servers     = params.rpc_servers.c_str();
     mparams.main_gpu        = params.main_gpu;
     mparams.split_mode      = params.split_mode;
     mparams.tensor_split    = params.tensor_split;
diff --git a/common/common.h b/common/common.h
index d80344f2a..566490e2f 100644
--- a/common/common.h
+++ b/common/common.h
@@ -82,6 +82,7 @@ struct gpt_params {
     float   yarn_beta_slow        = 1.0f;  // YaRN high correction dim
     int32_t yarn_orig_ctx         = 0;     // YaRN original context length
     float   defrag_thold          = -1.0f; // KV cache defragmentation threshold
+    std::string rpc_servers       = "";    // comma separated list of RPC servers
 
     ggml_backend_sched_eval_callback cb_eval = nullptr;
     void * cb_eval_user_data                 = nullptr;
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index f421769cc..b40ee4ccb 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -49,4 +49,7 @@ else()
         add_subdirectory(server)
     endif()
     add_subdirectory(export-lora)
+    if (LLAMA_RPC)
+        add_subdirectory(rpc)
+    endif()
 endif()
diff --git a/examples/rpc/CMakeLists.txt b/examples/rpc/CMakeLists.txt
new file mode 100644
index 000000000..ae48fb98d
--- /dev/null
+++ b/examples/rpc/CMakeLists.txt
@@ -0,0 +1,2 @@
+add_executable(rpc-server rpc-server.cpp)
+target_link_libraries(rpc-server PRIVATE ggml llama)
diff --git a/examples/rpc/README.md b/examples/rpc/README.md
new file mode 100644
index 000000000..325d0abc4
--- /dev/null
+++ b/examples/rpc/README.md
@@ -0,0 +1,74 @@
+## Overview
+
+The `rpc-server` allows  running `ggml` backend on a remote host.
+The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
+This can be used for distributed LLM inference with `llama.cpp` in the following way:
+
+```mermaid
+flowchart TD
+    rpcb---|TCP|srva
+    rpcb---|TCP|srvb
+    rpcb-.-|TCP|srvn
+    subgraph hostn[Host N]
+    srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
+    end
+    subgraph hostb[Host B]
+    srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
+    end
+    subgraph hosta[Host A]
+    srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
+    end
+    subgraph host[Main Host]
+    ggml[llama.cpp]---rpcb[RPC backend]
+    end
+    style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
+```
+
+Each host can run a different backend, e.g. one with CUDA and another with Metal.
+You can also run multiple `rpc-server` instances on the same host, each with a different backend.
+
+## Usage
+
+On each host, build the corresponding backend with `cmake` and add `-DLLAMA_RPC=ON` to the build options.
+For example, to build the CUDA backend with RPC support:
+
+```bash
+mkdir build-rpc-cuda
+cd build-rpc-cuda
+cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON
+cmake --build . --config Release
+```
+
+Then, start the `rpc-server` with the backend:
+
+```bash
+$ bin/rpc-server 0.0.0.0 50052
+create_backend: using CUDA backend
+ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
+ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
+ggml_cuda_init: found 1 CUDA devices:
+  Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
+Starting RPC server on 0.0.0.0:50052
+```
+
+When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
+```bash
+$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server 0.0.0.0 50052
+```
+This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
+
+
+On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`:
+
+```bash
+mkdir build-rpc
+cd build-rpc
+cmake .. -DLLAMA_RPC=ON
+cmake --build . --config Release
+```
+
+Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
+
+```bash
+$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
+```
diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp
new file mode 100644
index 000000000..496af8496
--- /dev/null
+++ b/examples/rpc/rpc-server.cpp
@@ -0,0 +1,70 @@
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+#ifdef GGML_USE_METAL
+#include "ggml-metal.h"
+#endif
+
+#include "ggml-rpc.h"
+#include <string>
+#include <stdio.h>
+
+static ggml_backend_t create_backend() {
+    ggml_backend_t backend = NULL;
+#ifdef GGML_USE_CUDA
+    fprintf(stderr, "%s: using CUDA backend\n", __func__);
+    backend = ggml_backend_cuda_init(0); // init device 0
+    if (!backend) {
+        fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
+    }
+#elif GGML_USE_METAL
+    fprintf(stderr, "%s: using Metal backend\n", __func__);
+    backend = ggml_backend_metal_init();
+    if (!backend) {
+        fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
+    }
+#endif
+
+    // if there aren't GPU Backends fallback to CPU backend
+    if (!backend) {
+        fprintf(stderr, "%s: using CPU backend\n", __func__);
+        backend = ggml_backend_cpu_init();
+    }
+    return backend;
+}
+
+static void get_backend_memory(size_t * free_mem, size_t * total_mem) {
+#ifdef GGML_USE_CUDA
+    ggml_backend_cuda_get_device_memory(0, free_mem, total_mem);
+#else
+    // TODO: implement for other backends
+    *free_mem = 1;
+    *total_mem = 1;
+#endif
+}
+
+int main(int argc, char * argv[]) {
+    if (argc < 3) {
+        fprintf(stderr, "Usage: %s <host> <port>\n", argv[0]);
+        return 1;
+    }
+    const char * host = argv[1];
+    int port = std::stoi(argv[2]);
+    if (port <= 0 || port > 65535) {
+        fprintf(stderr, "Invalid port number: %d\n", port);
+        return 1;
+    }
+    ggml_backend_t backend = create_backend();
+    if (!backend) {
+        fprintf(stderr, "Failed to create backend\n");
+        return 1;
+    }
+    printf("Starting RPC server on %s:%d\n", host, port);
+    size_t free_mem, total_mem;
+    get_backend_memory(&free_mem, &total_mem);
+    std::string endpoint = std::string(host) + ":" + std::to_string(port);
+    start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem);
+    ggml_backend_free(backend);
+    return 0;
+}
diff --git a/ggml-rpc.cpp b/ggml-rpc.cpp
new file mode 100644
index 000000000..efeacb297
--- /dev/null
+++ b/ggml-rpc.cpp
@@ -0,0 +1,1023 @@
+#include "ggml-rpc.h"
+#include "ggml.h"
+#include "ggml-backend-impl.h"
+
+#include <cinttypes>
+#include <string>
+#include <vector>
+#include <memory>
+#include <unordered_map>
+#include <unordered_set>
+#ifdef _WIN32
+#  define WIN32_LEAN_AND_MEAN
+#  ifndef NOMINMAX
+#     define NOMINMAX
+#  endif
+#  include <windows.h>
+#  include <winsock2.h>
+#else
+#  include <arpa/inet.h>
+#  include <sys/socket.h>
+#  include <sys/types.h>
+#  include <netinet/in.h>
+#  include <netinet/tcp.h>
+#  include <netdb.h>
+#  include <unistd.h>
+#endif
+#include <string.h>
+
+#define UNUSED GGML_UNUSED
+
+#define GGML_DEBUG 1
+#if (GGML_DEBUG >= 1)
+#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG(...)
+#endif
+
+#ifdef _WIN32
+typedef SOCKET sockfd_t;
+using ssize_t = __int64;
+#else
+typedef int sockfd_t;
+#endif
+
+// cross-platform socket
+struct socket_t {
+    sockfd_t fd;
+    socket_t(sockfd_t fd) : fd(fd) {}
+    ~socket_t() {
+#ifdef _WIN32
+        closesocket(this->fd);
+#else
+        close(this->fd);
+#endif
+    }
+};
+
+// ggml_tensor is serialized into rpc_tensor
+struct rpc_tensor {
+    uint64_t id;
+    uint32_t type;
+    uint64_t buffer;
+    uint32_t ne[GGML_MAX_DIMS];
+    uint32_t nb[GGML_MAX_DIMS];
+    uint32_t op;
+    int32_t  op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
+    int32_t  flags;
+    uint64_t src[GGML_MAX_SRC];
+    uint64_t view_src;
+    uint64_t view_offs;
+    uint64_t data;
+    char name[GGML_MAX_NAME];
+};
+
+// RPC commands
+enum rpc_cmd {
+    ALLOC_BUFFER = 0,
+    GET_ALIGNMENT,
+    GET_MAX_SIZE,
+    BUFFER_GET_BASE,
+    FREE_BUFFER,
+    BUFFER_CLEAR,
+    SET_TENSOR,
+    GET_TENSOR,
+    COPY_TENSOR,
+    GRAPH_COMPUTE,
+    GET_DEVICE_MEMORY,
+};
+
+// RPC data structures
+
+static ggml_guid_t ggml_backend_rpc_guid() {
+    static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
+    return &guid;
+}
+
+struct ggml_backend_rpc_buffer_type_context {
+    std::shared_ptr<socket_t> sock;
+    std::string name;
+    size_t alignment;
+    size_t max_size;
+};
+
+struct ggml_backend_rpc_context {
+    std::string endpoint;
+    std::string name;
+    std::shared_ptr<socket_t> sock;
+    ggml_backend_buffer_type_t buft;
+};
+
+struct ggml_backend_rpc_buffer_context {
+    std::shared_ptr<socket_t> sock;
+    std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
+    uint64_t remote_ptr;
+    std::string name;
+};
+
+// RPC helper functions
+
+static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
+#ifdef _WIN32
+    if (fd == INVALID_SOCKET) {
+        return nullptr;
+    }
+#else
+    if (fd < 0) {
+        return nullptr;
+    }
+#endif
+    return std::make_shared<socket_t>(fd);
+}
+
+static bool set_no_delay(sockfd_t sockfd) {
+    int flag = 1;
+    // set TCP_NODELAY to disable Nagle's algorithm
+    int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
+    return ret >= 0;
+}
+
+static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
+    struct sockaddr_in addr;
+    auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
+    auto sock_ptr = make_socket(sockfd);
+    if (sock_ptr == nullptr) {
+        return nullptr;
+    }
+    if (!set_no_delay(sockfd)) {
+        fprintf(stderr, "Failed to set TCP_NODELAY\n");
+        return nullptr;
+    }
+    addr.sin_family = AF_INET;
+    addr.sin_port = htons(port);
+    struct hostent * server = gethostbyname(host);
+    if (server == NULL) {
+        fprintf(stderr, "Cannot resolve host '%s'\n", host);
+        return nullptr;
+    }
+    memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
+    if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
+        return nullptr;
+    }
+    return sock_ptr;
+}
+
+static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
+    auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
+    auto client_socket = make_socket(client_socket_fd);
+    if (client_socket == nullptr) {
+        return nullptr;
+    }
+    if (!set_no_delay(client_socket_fd)) {
+        fprintf(stderr, "Failed to set TCP_NODELAY\n");
+        return nullptr;
+    }
+    return client_socket;
+}
+
+static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
+    auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
+    auto sock = make_socket(sockfd);
+    if (sock == nullptr) {
+        return nullptr;
+    }
+
+    struct sockaddr_in serv_addr;
+    serv_addr.sin_family = AF_INET;
+    serv_addr.sin_addr.s_addr = inet_addr(host);
+    serv_addr.sin_port = htons(port);
+
+    if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
+        return nullptr;
+    }
+    if (listen(sockfd, 1) < 0) {
+        return nullptr;
+    }
+    return sock;
+}
+
+static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
+    size_t bytes_sent = 0;
+    while (bytes_sent < size) {
+        ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
+        if (n < 0) {
+            return false;
+        }
+        bytes_sent += n;
+    }
+    return true;
+}
+
+static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
+    size_t bytes_recv = 0;
+    while (bytes_recv < size) {
+        ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
+        if (n <= 0) {
+            return false;
+        }
+        bytes_recv += n;
+    }
+    return true;
+}
+
+static bool parse_endpoint(const char * endpoint, std::string & host, int & port) {
+    std::string str(endpoint);
+    size_t pos = str.find(':');
+    if (pos == std::string::npos) {
+        return false;
+    }
+    host = str.substr(0, pos);
+    port = std::stoi(str.substr(pos + 1));
+    return true;
+}
+
+// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
+// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
+static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    uint8_t cmd_byte = cmd;
+    if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
+        return false;
+    }
+    uint64_t input_size = input.size();
+    if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
+        return false;
+    }
+    if (!send_data(sock->fd, input.data(), input.size())) {
+        return false;
+    }
+    uint64_t output_size;
+    if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
+        return false;
+    }
+    if (output_size == 0) {
+        output.clear();
+        return true;
+    }
+    output.resize(output_size);
+    if (!recv_data(sock->fd, output.data(), output_size)) {
+        return false;
+    }
+    return true;
+}
+
+// RPC client-side implementation
+
+GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    return ctx->name.c_str();
+}
+
+GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    // input serialization format: | remote_ptr (8 bytes) |
+    std::vector<uint8_t> input(sizeof(uint64_t), 0);
+    uint64_t remote_ptr = ctx->remote_ptr;
+    memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.empty());
+    delete ctx;
+}
+
+GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
+        return ctx->base_cache[buffer];
+    }
+    // input serialization format: | remote_ptr (8 bytes) |
+    std::vector<uint8_t> input(sizeof(uint64_t), 0);
+    uint64_t remote_ptr = ctx->remote_ptr;
+    memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == sizeof(uint64_t));
+    // output serialization format: | base_ptr (8 bytes) |
+    uint64_t base_ptr;
+    memcpy(&base_ptr, output.data(), sizeof(base_ptr));
+    void * base = reinterpret_cast<void *>(base_ptr);
+    ctx->base_cache[buffer] = base;
+    return base;
+}
+
+static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
+    rpc_tensor result;
+    result.id = reinterpret_cast<uint64_t>(tensor);
+    result.type = tensor->type;
+    if (tensor->buffer) {
+        ggml_backend_buffer_t buffer = tensor->buffer;
+        ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+        result.buffer = ctx->remote_ptr;
+    } else {
+        result.buffer = 0;
+    }
+    for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
+        result.ne[i] = tensor->ne[i];
+        result.nb[i] = tensor->nb[i];
+    }
+    result.op = tensor->op;
+    for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
+        result.op_params[i] = tensor->op_params[i];
+    }
+    result.flags = tensor->flags;
+    for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
+        result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
+    }
+    result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
+    result.view_offs = tensor->view_offs;
+    result.data = reinterpret_cast<uint64_t>(tensor->data);
+    snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
+    return result;
+}
+
+static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
+    ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
+        tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
+    for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
+        result->nb[i] = tensor->nb[i];
+    }
+    result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
+    result->op = (ggml_op) tensor->op;
+    for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
+        result->op_params[i] = tensor->op_params[i];
+    }
+    result->flags = tensor->flags;
+    result->data = reinterpret_cast<void *>(tensor->data);
+    ggml_set_name(result, tensor->name);
+    return result;
+}
+
+GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+    UNUSED(buffer);
+    if (ggml_is_quantized(tensor->type)) {
+        // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
+        GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
+    }
+}
+
+GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
+    size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
+    std::vector<uint8_t> input(input_size, 0);
+    rpc_tensor rpc_tensor = serialize_tensor(tensor);
+    memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
+    memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
+    memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
+    GGML_ASSERT(status);
+}
+
+GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
+    int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
+    std::vector<uint8_t> input(input_size, 0);
+    rpc_tensor rpc_tensor = serialize_tensor(tensor);
+    memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
+    memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
+    memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == size);
+    // output serialization format: | data (size bytes) |
+    memcpy(data, output.data(), size);
+}
+
+GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+    // check if src and dst are on the same server
+    ggml_backend_buffer_t src_buffer = src->buffer;
+    ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
+    ggml_backend_buffer_t dst_buffer = dst->buffer;
+    ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
+    if (src_ctx->sock != dst_ctx->sock) {
+        return false;
+    }
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    // input serialization format: | rpc_tensor src | rpc_tensor dst |
+    int input_size = 2*sizeof(rpc_tensor);
+    std::vector<uint8_t> input(input_size, 0);
+    rpc_tensor rpc_src = serialize_tensor(src);
+    rpc_tensor rpc_dst = serialize_tensor(dst);
+    memcpy(input.data(), &rpc_src, sizeof(rpc_src));
+    memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
+    GGML_ASSERT(status);
+    // output serialization format: | result (1 byte) |
+    GGML_ASSERT(output.size() == 1);
+    return output[0];
+}
+
+GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
+    // serialization format: | bufptr (8 bytes) | value (1 byte) |
+    int input_size = sizeof(uint64_t) + sizeof(uint8_t);
+    std::vector<uint8_t> input(input_size, 0);
+    memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
+    memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
+    GGML_ASSERT(status);
+}
+
+static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
+    /* .get_name        = */ ggml_backend_rpc_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_rpc_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_rpc_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_rpc_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_rpc_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_rpc_buffer_get_tensor,
+    /* .cpy_tensor      = */ ggml_backend_rpc_buffer_cpy_tensor,
+    /* .clear           = */ ggml_backend_rpc_buffer_clear,
+    /* .reset           = */ NULL,
+};
+
+GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
+    return buft_ctx->name.c_str();
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
+    // input serialization format: | size (8 bytes) |
+    int input_size = sizeof(uint64_t);
+    std::vector<uint8_t> input(input_size, 0);
+    memcpy(input.data(), &size, sizeof(size));
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
+    // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
+    uint64_t remote_ptr;
+    memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
+    size_t remote_size;
+    memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
+
+    ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
+        ggml_backend_rpc_buffer_interface,
+        new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"},
+        remote_size);
+
+    return buffer;
+}
+
+static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
+    // input serialization format: | 0 bytes |
+    std::vector<uint8_t> input;
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == sizeof(uint64_t));
+    // output serialization format: | alignment (8 bytes) |
+    uint64_t alignment;
+    memcpy(&alignment, output.data(), sizeof(alignment));
+    return alignment;
+}
+
+GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
+    return buft_ctx->alignment;
+}
+
+static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
+    // input serialization format: | 0 bytes |
+    std::vector<uint8_t> input;
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == sizeof(uint64_t));
+    // output serialization format: | max_size (8 bytes) |
+    uint64_t max_size;
+    memcpy(&max_size, output.data(), sizeof(max_size));
+    return max_size;
+}
+
+GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
+    return buft_ctx->max_size;
+}
+
+GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+    UNUSED(buft);
+    return ggml_nbytes(tensor);
+}
+
+GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    if (!ggml_backend_is_rpc(backend)) {
+        return false;
+    }
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
+    ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
+    return buft_ctx->sock == rpc_ctx->sock;
+}
+
+static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_rpc_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_rpc_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_rpc_buffer_type_get_alignment,
+    /* .get_max_size     = */ ggml_backend_rpc_get_max_size,
+    /* .get_alloc_size   = */ ggml_backend_rpc_buffer_type_get_alloc_size,
+    /* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend,
+    /* .is_host          = */ NULL,
+};
+
+
+GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
+    ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
+
+    return rpc_ctx->name.c_str();
+}
+
+GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
+    ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
+    ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context;
+    delete buft_ctx;
+    delete rpc_ctx->buft;
+    delete rpc_ctx;
+    delete backend;
+}
+
+GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
+    ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
+    return ctx->buft;
+}
+
+GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
+    UNUSED(backend);
+    // this is no-op because we don't have any async operations
+}
+
+static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
+    if (tensor == nullptr) {
+        return;
+    }
+    if (visited.find(tensor) != visited.end()) {
+        return;
+    }
+    visited.insert(tensor);
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        add_tensor(tensor->src[i], tensors, visited);
+    }
+    add_tensor(tensor->view_src, tensors, visited);
+    tensors.push_back(serialize_tensor(tensor));
+}
+
+static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
+    uint32_t n_nodes = cgraph->n_nodes;
+    std::vector<rpc_tensor> tensors;
+    std::unordered_set<ggml_tensor*> visited;
+    for (uint32_t i = 0; i < n_nodes; i++) {
+        add_tensor(cgraph->nodes[i], tensors, visited);
+    }
+    // serialization format:
+    // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
+    uint32_t n_tensors = tensors.size();
+    int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
+    output.resize(output_size, 0);
+    memcpy(output.data(), &n_nodes, sizeof(n_nodes));
+    uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
+    for (uint32_t i = 0; i < n_nodes; i++) {
+        out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
+    }
+    uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
+    *out_ntensors = n_tensors;
+    rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
+    memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
+}
+
+GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+    ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
+    std::vector<uint8_t> input;
+    serialize_graph(cgraph, input);
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == 1);
+    return (enum ggml_status)output[0];
+}
+
+GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+    UNUSED(backend);
+    UNUSED(op);
+    GGML_ASSERT(false && "not implemented");
+    return false;
+}
+
+static ggml_backend_i ggml_backend_rpc_interface = {
+    /* .get_name                = */ ggml_backend_rpc_name,
+    /* .free                    = */ ggml_backend_rpc_free,
+    /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
+    /* .set_tensor_async        = */ NULL,
+    /* .get_tensor_async        = */ NULL,
+    /* .cpy_tensor_async        = */ NULL,
+    /* .synchronize             = */ ggml_backend_rpc_synchronize,
+    /* .graph_plan_create       = */ NULL,
+    /* .graph_plan_free         = */ NULL,
+    /* .graph_plan_compute      = */ NULL,
+    /* .graph_compute           = */ ggml_backend_rpc_graph_compute,
+    /* .supports_op             = */ ggml_backend_rpc_supports_op,
+    /* .offload_op              = */ NULL,
+    /* .event_new               = */ NULL,
+    /* .event_free              = */ NULL,
+    /* .event_record            = */ NULL,
+    /* .event_wait              = */ NULL,
+    /* .event_synchronize       = */ NULL,
+};
+
+static std::unordered_map<std::string, ggml_backend_t> instances;
+
+GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
+    ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
+    return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr;
+}
+
+GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
+    std::string endpoint_str(endpoint);
+    if (instances.find(endpoint_str) != instances.end()) {
+        return instances[endpoint_str];
+    }
+#ifdef _WIN32
+    {
+        WSADATA wsaData;
+        int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
+        if (res != 0) {
+            return nullptr;
+        }
+    }
+#endif
+    GGML_PRINT_DEBUG("Connecting to %s\n", endpoint);
+    std::string host;
+    int port;
+    if (!parse_endpoint(endpoint, host, port)) {
+        return nullptr;
+    }
+    auto sock = socket_connect(host.c_str(), port);
+    if (sock == nullptr) {
+        return nullptr;
+    }
+    size_t alignment = get_alignment(sock);
+    size_t max_size = get_max_size(sock);
+    ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
+        /* .sock   = */ sock,
+        /* .name   = */ "RPC" + std::to_string(sock->fd),
+        /* .alignment = */ alignment,
+        /* .max_size = */ max_size
+    };
+
+    ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
+        /* .iface   = */ ggml_backend_rpc_buffer_type_interface,
+        /* .context = */ buft_ctx
+    };
+
+    ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
+        /* .endpoint = */ endpoint,
+        /* .name     = */ "RPC" + std::to_string(sock->fd),
+        /* .sock     = */ sock,
+        /* .buft     = */ buft
+    };
+
+    instances[endpoint] = new ggml_backend {
+        /* .guid      = */ ggml_backend_rpc_guid(),
+        /* .interface = */ ggml_backend_rpc_interface,
+        /* .context   = */ ctx
+    };
+
+    return instances[endpoint];
+}
+
+GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
+    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
+}
+
+static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
+    // input serialization format: | 0 bytes |
+    std::vector<uint8_t> input;
+    std::vector<uint8_t> output;
+    bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
+    GGML_ASSERT(status);
+    GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
+    // output serialization format: | free (8 bytes) | total (8 bytes) |
+    uint64_t free_mem;
+    memcpy(&free_mem, output.data(), sizeof(free_mem));
+    uint64_t total_mem;
+    memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
+    *free = free_mem;
+    *total = total_mem;
+}
+
+GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
+    ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
+    if (backend == nullptr) {
+        *free = 0;
+        *total = 0;
+        return;
+    }
+    ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
+    get_device_memory(ctx->sock, free, total);
+}
+
+// RPC server-side implementation
+
+static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    // input serialization format: | size (8 bytes) |
+    uint64_t size;
+    memcpy(&size, input.data(), sizeof(size));
+    ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+    ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
+    uint64_t remote_ptr = reinterpret_cast<uint64_t>(buffer);
+    uint64_t remote_size = buffer->size;
+    GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
+    // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
+    output.resize(2*sizeof(uint64_t), 0);
+    memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
+    memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
+}
+
+static void rpc_get_alignment(ggml_backend_t backend, std::vector<uint8_t> & output) {
+    ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+    size_t alignment = ggml_backend_buft_get_alignment(buft);
+    GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
+    // output serialization format: | alignment (8 bytes) |
+    output.resize(sizeof(uint64_t), 0);
+    memcpy(output.data(), &alignment, sizeof(alignment));
+}
+
+static void rpc_get_max_size(ggml_backend_t backend, std::vector<uint8_t> & output) {
+    ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+    size_t max_size = ggml_backend_buft_get_max_size(buft);
+    GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
+    // output serialization format: | max_size (8 bytes) |
+    output.resize(sizeof(uint64_t), 0);
+    memcpy(output.data(), &max_size, sizeof(max_size));
+}
+
+static void rpc_buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    // input serialization format: | remote_ptr (8 bytes) |
+    uint64_t remote_ptr;
+    memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
+    GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
+    ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
+    void * base = ggml_backend_buffer_get_base(buffer);
+    // output serialization format: | base_ptr (8 bytes) |
+    uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
+    output.resize(sizeof(uint64_t), 0);
+    memcpy(output.data(), &base_ptr, sizeof(base_ptr));
+}
+
+static void rpc_free_buffer(const std::vector<uint8_t> & input) {
+    // input serialization format: | remote_ptr (8 bytes) |
+    uint64_t remote_ptr;
+    memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
+    GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
+    ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
+    ggml_backend_buffer_free(buffer);
+}
+
+static void rpc_buffer_clear(const std::vector<uint8_t> & input) {
+    // input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
+    uint64_t remote_ptr;
+    memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
+    uint8_t value;
+    memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
+    GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
+    ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
+    ggml_backend_buffer_clear(buffer, value);
+}
+
+static void rpc_set_tensor(const std::vector<uint8_t> & input) {
+    // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
+    const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
+    uint64_t offset;
+    memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
+    size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
+
+    struct ggml_init_params params {
+        /*.mem_size   =*/ ggml_tensor_overhead(),
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+    struct ggml_context * ctx = ggml_init(params);
+    ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
+    GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
+    const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
+    ggml_backend_tensor_set(tensor, data, offset, size);
+    ggml_free(ctx);
+}
+
+static void rpc_get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
+    const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
+    uint64_t offset;
+    memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
+    uint64_t size;
+    memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
+
+    struct ggml_init_params params {
+        /*.mem_size   =*/ ggml_tensor_overhead(),
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+    struct ggml_context * ctx = ggml_init(params);
+    ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
+    GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
+    // output serialization format: | data (size bytes) |
+    output.resize(size, 0);
+    ggml_backend_tensor_get(tensor, output.data(), offset, size);
+    ggml_free(ctx);
+}
+
+static void rpc_copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    // serialization format: | rpc_tensor src | rpc_tensor dst |
+    const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
+    const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
+
+    struct ggml_init_params params {
+        /*.mem_size   =*/ 2*ggml_tensor_overhead(),
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+    struct ggml_context * ctx = ggml_init(params);
+    ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
+    ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
+    GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
+    bool result = ggml_backend_buffer_copy_tensor(src, dst);
+    // output serialization format: | result (1 byte) |
+    output.resize(1, 0);
+    output[0] = result;
+    ggml_free(ctx);
+}
+
+static struct ggml_tensor * create_node(uint64_t id,
+                                        struct ggml_context * ctx,
+                                        const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
+                                        std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
+    if (id == 0) {
+        return nullptr;
+    }
+    if (tensor_map.find(id) != tensor_map.end()) {
+        return tensor_map[id];
+    }
+    const rpc_tensor * tensor = tensor_ptrs.at(id);
+    struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
+    tensor_map[id] = result;
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
+    }
+    result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
+    result->view_offs = tensor->view_offs;
+    return result;
+}
+
+static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
+    // serialization format:
+    // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
+    uint32_t n_nodes;
+    memcpy(&n_nodes, input.data(), sizeof(n_nodes));
+    const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
+    uint32_t n_tensors;
+    memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
+    const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
+    GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
+
+    static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
+    struct ggml_init_params params = {
+        /*.mem_size   =*/ buf_size,
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+    struct ggml_context * ctx = ggml_init(params);
+    struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
+    graph->n_nodes = n_nodes;
+    std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
+    for (uint32_t i = 0; i < n_tensors; i++) {
+        tensor_ptrs[tensors[i].id] = &tensors[i];
+    }
+    std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
+    for (uint32_t i = 0; i < n_nodes; i++) {
+        graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
+    }
+    ggml_status status = ggml_backend_graph_compute(backend, graph);
+    // output serialization format: | status (1 byte) |
+    output.resize(1, 0);
+    output[0] = status;
+    ggml_free(ctx);
+}
+
+static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
+    while (true) {
+        uint8_t cmd;
+        if (!recv_data(sockfd, &cmd, 1)) {
+            break;
+        }
+        std::vector<uint8_t> input;
+        std::vector<uint8_t> output;
+        uint64_t input_size;
+        if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
+            break;
+        }
+        input.resize(input_size);
+        if (!recv_data(sockfd, input.data(), input_size)) {
+            break;
+        }
+        switch (cmd) {
+            case ALLOC_BUFFER: {
+                rpc_alloc_buffer(backend, input, output);
+                break;
+            }
+            case GET_ALIGNMENT: {
+                rpc_get_alignment(backend, output);
+                break;
+            }
+            case GET_MAX_SIZE: {
+                rpc_get_max_size(backend, output);
+                break;
+            }
+            case BUFFER_GET_BASE: {
+                rpc_buffer_get_base(input, output);
+                break;
+            }
+            case FREE_BUFFER: {
+                rpc_free_buffer(input);
+                break;
+            }
+            case BUFFER_CLEAR: {
+                rpc_buffer_clear(input);
+                break;
+            }
+            case SET_TENSOR: {
+                rpc_set_tensor(input);
+                break;
+            }
+            case GET_TENSOR: {
+                rpc_get_tensor(input, output);
+                break;
+            }
+            case COPY_TENSOR: {
+                rpc_copy_tensor(input, output);
+                break;
+            }
+            case GRAPH_COMPUTE: {
+                rpc_graph_compute(backend, input, output);
+                break;
+            }
+            case GET_DEVICE_MEMORY: {
+                // output serialization format: | free (8 bytes) | total (8 bytes) |
+                output.resize(2*sizeof(uint64_t), 0);
+                memcpy(output.data(), &free_mem, sizeof(free_mem));
+                memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem));
+                break;
+            }
+            default: {
+                fprintf(stderr, "Unknown command: %d\n", cmd);
+                return;
+            }
+        }
+        uint64_t output_size = output.size();
+        if (!send_data(sockfd, &output_size, sizeof(output_size))) {
+            break;
+        }
+        if (!send_data(sockfd, output.data(), output_size)) {
+            break;
+        }
+    }
+}
+
+void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
+    std::string host;
+    int port;
+    if (!parse_endpoint(endpoint, host, port)) {
+        return;
+    }
+#ifdef _WIN32
+    {
+        WSADATA wsaData;
+        int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
+        if (res != 0) {
+            fprintf(stderr, "WSAStartup failed: %d\n", res);
+            return;
+        }
+    }
+#endif
+    auto server_socket = create_server_socket(host.c_str(), port);
+    if (server_socket == nullptr) {
+        fprintf(stderr, "Failed to create server socket\n");
+        return;
+    }
+    while (true) {
+        auto client_socket = socket_accept(server_socket->fd);
+        if (client_socket == nullptr) {
+            fprintf(stderr, "Failed to accept client connection\n");
+            return;
+        }
+        printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
+        rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
+        printf("Client connection closed\n");
+    }
+#ifdef _WIN32
+    WSACleanup();
+#endif
+}
diff --git a/ggml-rpc.h b/ggml-rpc.h
new file mode 100644
index 000000000..aa144832a
--- /dev/null
+++ b/ggml-rpc.h
@@ -0,0 +1,24 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#ifdef  __cplusplus
+extern "C" {
+#endif
+
+#define GGML_RPC_MAX_SERVERS       16
+
+// backend API
+GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
+GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
+
+GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
+
+GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
+
+GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
+
+#ifdef  __cplusplus
+}
+#endif
diff --git a/llama.cpp b/llama.cpp
index ad35e4a2e..7d26966e4 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -7,6 +7,10 @@
 #include "ggml-alloc.h"
 #include "ggml-backend.h"
 
+#ifdef GGML_USE_RPC
+#  include "ggml-rpc.h"
+#endif
+
 #ifdef GGML_USE_CUDA
 #  include "ggml-cuda.h"
 #elif defined(GGML_USE_CLBLAST)
@@ -1685,91 +1689,6 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer
     GGML_UNUSED(host_buffer);
 }
 
-static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
-    ggml_backend_buffer_type_t buft = nullptr;
-
-#ifdef GGML_USE_METAL
-    buft = ggml_backend_metal_buffer_type();
-#elif defined(GGML_USE_CUDA)
-    buft = ggml_backend_cuda_buffer_type(gpu);
-#elif defined(GGML_USE_VULKAN)
-    buft = ggml_backend_vk_buffer_type(gpu);
-#elif defined(GGML_USE_SYCL)
-    buft = ggml_backend_sycl_buffer_type(gpu);
-#elif defined(GGML_USE_CLBLAST)
-    buft = ggml_backend_opencl_buffer_type();
-#elif defined(GGML_USE_KOMPUTE)
-    buft = ggml_backend_kompute_buffer_type(gpu);
-    if (buft == nullptr) {
-        LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
-    }
-#endif
-
-    if (buft == nullptr) {
-        buft = llama_default_buffer_type_cpu(true);
-    }
-    return buft;
-
-    GGML_UNUSED(gpu);
-}
-
-static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
-    ggml_backend_buffer_type_t buft = nullptr;
-
-#ifdef GGML_USE_CUDA
-    if (ggml_backend_cuda_get_device_count() > 1) {
-        buft = ggml_backend_cuda_split_buffer_type(tensor_split);
-    }
-#endif
-
-#ifdef GGML_USE_SYCL
-    if (ggml_backend_sycl_get_device_count() > 1) {
-        buft = ggml_backend_sycl_split_buffer_type(tensor_split);
-    }
-#endif
-
-    if (buft == nullptr) {
-        buft = llama_default_buffer_type_offload(fallback_gpu);
-    }
-    return buft;
-
-    GGML_UNUSED(tensor_split);
-}
-
-static size_t llama_get_device_count() {
-#if defined(GGML_USE_CUDA)
-    return ggml_backend_cuda_get_device_count();
-#elif defined(GGML_USE_SYCL)
-    return ggml_backend_sycl_get_device_count();
-#elif defined(GGML_USE_VULKAN)
-    return ggml_backend_vk_get_device_count();
-#else
-    return 1;
-#endif
-}
-
-static size_t llama_get_device_memory(int device) {
-#if defined(GGML_USE_CUDA)
-    size_t total;
-    size_t free;
-    ggml_backend_cuda_get_device_memory(device, &free, &total);
-    return free;
-#elif defined(GGML_USE_SYCL)
-    size_t total;
-    size_t free;
-    ggml_backend_sycl_get_device_memory(device, &free, &total);
-    return free;
-#elif defined(GGML_USE_VULKAN)
-    size_t total;
-    size_t free;
-    ggml_backend_vk_get_device_memory(device, &free, &total);
-    return free;
-#else
-    return 1;
-    GGML_UNUSED(device);
-#endif
-}
-
 //
 // globals
 //
@@ -2210,6 +2129,8 @@ struct llama_model {
     int main_gpu;
     int n_gpu_layers;
 
+    std::vector<std::string> rpc_servers;
+
     // gguf metadata
     std::unordered_map<std::string, std::string> gguf_kv;
 
@@ -2353,6 +2274,104 @@ struct llama_context {
 #endif
 };
 
+static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
+    ggml_backend_buffer_type_t buft = nullptr;
+
+#ifdef GGML_USE_RPC
+    std::string endpoint = model.rpc_servers[gpu];
+    buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
+#elif defined(GGML_USE_METAL)
+    buft = ggml_backend_metal_buffer_type();
+#elif defined(GGML_USE_CUDA)
+    buft = ggml_backend_cuda_buffer_type(gpu);
+#elif defined(GGML_USE_VULKAN)
+    buft = ggml_backend_vk_buffer_type(gpu);
+#elif defined(GGML_USE_SYCL)
+    buft = ggml_backend_sycl_buffer_type(gpu);
+#elif defined(GGML_USE_CLBLAST)
+    buft = ggml_backend_opencl_buffer_type();
+#elif defined(GGML_USE_KOMPUTE)
+    buft = ggml_backend_kompute_buffer_type(gpu);
+    if (buft == nullptr) {
+        LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
+    }
+#endif
+
+    if (buft == nullptr) {
+        buft = llama_default_buffer_type_cpu(true);
+    }
+    return buft;
+    GGML_UNUSED(model);
+    GGML_UNUSED(gpu);
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
+    ggml_backend_buffer_type_t buft = nullptr;
+
+#ifdef GGML_USE_CUDA
+    if (ggml_backend_cuda_get_device_count() > 1) {
+        buft = ggml_backend_cuda_split_buffer_type(tensor_split);
+    }
+#endif
+
+#ifdef GGML_USE_SYCL
+    if (ggml_backend_sycl_get_device_count() > 1) {
+        buft = ggml_backend_sycl_split_buffer_type(tensor_split);
+    }
+#endif
+
+    if (buft == nullptr) {
+        buft = llama_default_buffer_type_offload(model, fallback_gpu);
+    }
+    return buft;
+
+    GGML_UNUSED(tensor_split);
+}
+
+static size_t llama_get_device_count(const llama_model & model) {
+#if defined(GGML_USE_RPC)
+    return model.rpc_servers.size();
+#elif defined(GGML_USE_CUDA)
+    return ggml_backend_cuda_get_device_count();
+#elif defined(GGML_USE_SYCL)
+    return ggml_backend_sycl_get_device_count();
+#elif defined(GGML_USE_VULKAN)
+    return ggml_backend_vk_get_device_count();
+#else
+    return 1;
+#endif
+    GGML_UNUSED(model);
+}
+
+static size_t llama_get_device_memory(const llama_model & model, int device) {
+#if defined(GGML_USE_RPC)
+    size_t total;
+    size_t free;
+    std::string endpoint = model.rpc_servers[device];
+    ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
+    return free;
+#elif defined(GGML_USE_CUDA)
+    size_t total;
+    size_t free;
+    ggml_backend_cuda_get_device_memory(device, &free, &total);
+    return free;
+#elif defined(GGML_USE_SYCL)
+    size_t total;
+    size_t free;
+    ggml_backend_sycl_get_device_memory(device, &free, &total);
+    return free;
+#elif defined(GGML_USE_VULKAN)
+    size_t total;
+    size_t free;
+    ggml_backend_vk_get_device_memory(device, &free, &total);
+    return free;
+#else
+    return 1;
+#endif
+    GGML_UNUSED(model);
+    GGML_UNUSED(device);
+}
+
 //
 // kv cache helpers
 //
@@ -4791,13 +4810,13 @@ static bool llm_load_tensors(
 
     if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
         // calculate the split points
-        int device_count = llama_get_device_count();
+        int device_count = llama_get_device_count(model);
         bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
         std::vector<float> splits(device_count);
         if (all_zero) {
             // default split, by free memory
             for (int i = 0; i < device_count; ++i) {
-                splits[i] = llama_get_device_memory(i);
+                splits[i] = llama_get_device_memory(model, i);
             }
         } else {
             std::copy(tensor_split, tensor_split + device_count, splits.begin());
@@ -4817,35 +4836,35 @@ static bool llm_load_tensors(
         int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
         for (int64_t i = i_gpu_start; i < n_layer; ++i) {
             int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
-            model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
+            model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
         }
         // assign the output layer
         if (n_gpu_layers > n_layer) {
             int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
-            model.buft_output = llama_default_buffer_type_offload(layer_gpu);
+            model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
         } else {
             model.buft_output = llama_default_buffer_type_cpu(true);
         }
     } else {
         ggml_backend_buffer_type_t split_buft;
         if (split_mode == LLAMA_SPLIT_MODE_ROW) {
-            split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
+            split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
         } else {
             // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
-            split_buft = llama_default_buffer_type_offload(main_gpu);
+            split_buft = llama_default_buffer_type_offload(model, main_gpu);
         }
         // assign the repeating layers
         for (int64_t i = i_gpu_start; i < n_layer; ++i) {
             model.buft_layer[i] = {
                 split_buft,
-                llama_default_buffer_type_offload(main_gpu)
+                llama_default_buffer_type_offload(model, main_gpu)
             };
         }
         // assign the output layer
         if (n_gpu_layers > n_layer) {
             model.buft_output = {
                 split_buft,
-                llama_default_buffer_type_offload(main_gpu)
+                llama_default_buffer_type_offload(model, main_gpu)
             };
         } else {
             model.buft_output = llama_default_buffer_type_cpu(true);
@@ -15390,6 +15409,7 @@ struct llama_model_params llama_model_default_params() {
         /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
         /*.main_gpu                    =*/ 0,
         /*.tensor_split                =*/ nullptr,
+        /*.rpc_servers                 =*/ nullptr,
         /*.progress_callback           =*/ nullptr,
         /*.progress_callback_user_data =*/ nullptr,
         /*.kv_overrides                =*/ nullptr,
@@ -15460,7 +15480,9 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
 }
 
 size_t llama_max_devices(void) {
-#if defined(GGML_USE_METAL)
+#if defined(GGML_USE_RPC)
+    return GGML_RPC_MAX_SERVERS;
+#elif defined(GGML_USE_METAL)
     return 1;
 #elif defined(GGML_USE_CUDA)
     return GGML_CUDA_MAX_DEVICES;
@@ -15483,7 +15505,7 @@ bool llama_supports_mlock(void) {
 
 bool llama_supports_gpu_offload(void) {
 #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
-    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
+    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
     // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
     return true;
 #else
@@ -15546,7 +15568,17 @@ struct llama_model * llama_load_model_from_file(
             return true;
         };
     }
-
+    if (params.rpc_servers != nullptr) {
+        // split the servers set them into model->rpc_servers
+        std::string servers(params.rpc_servers);
+        size_t pos = 0;
+        while ((pos = servers.find(",")) != std::string::npos) {
+            std::string server = servers.substr(0, pos);
+            model->rpc_servers.push_back(server);
+            servers.erase(0, pos + 1);
+        }
+        model->rpc_servers.push_back(servers);
+    }
     int status = llama_model_load(path_model, *model, params);
     GGML_ASSERT(status <= 0);
     if (status < 0) {
@@ -15693,7 +15725,17 @@ struct llama_context * llama_new_context_with_model(
 
     if (!hparams.vocab_only) {
         // initialize backends
-#ifdef GGML_USE_METAL
+#if defined(GGML_USE_RPC)
+        for (auto & server : model->rpc_servers) {
+            ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        }
+#elif defined(GGML_USE_METAL)
         if (model->n_gpu_layers > 0) {
             ctx->backend_metal = ggml_backend_metal_init();
             if (ctx->backend_metal == nullptr) {
@@ -15850,7 +15892,7 @@ struct llama_context * llama_new_context_with_model(
 
             // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
             bool pipeline_parallel =
-                llama_get_device_count() > 1 &&
+                llama_get_device_count(*model) > 1 &&
                 model->n_gpu_layers > (int)model->hparams.n_layer &&
                 model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
                 params.offload_kqv;
diff --git a/llama.h b/llama.h
index 0b2e708d0..612e32c4e 100644
--- a/llama.h
+++ b/llama.h
@@ -242,6 +242,9 @@ extern "C" {
         // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
         const float * tensor_split;
 
+        // comma separated list of RPC servers to use for offloading
+        const char * rpc_servers;
+
         // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
         // If the provided progress_callback returns true, model loading continues.
         // If it returns false, model loading is immediately aborted.