foundationdb/flow/TLSConfig.actor.cpp
2024-07-23 09:52:49 -07:00

1032 lines
29 KiB
C++

/*
* TLSConfig.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define PRIVATE_EXCEPT_FOR_TLSCONFIG_CPP
#include "flow/TLSConfig.actor.h"
#undef PRIVATE_EXCEPT_FOR_TLSCONFIG_CPP
// To force typeinfo to only be emitted once.
TLSPolicy::~TLSPolicy() {}
#include <algorithm>
#include <cstring>
#include <exception>
#include <map>
#include <memory>
#include <set>
#include <stdint.h>
#include <string>
#include <string_view>
#include <sstream>
#include <utility>
#include <vector>
#include <boost/asio/ssl/context.hpp>
#include <boost/lexical_cast.hpp>
#include <openssl/crypto.h>
#include <openssl/objects.h>
#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/x509_vfy.h>
#include <fmt/core.h>
#include "flow/Platform.h"
#include "flow/IAsyncFile.h"
#include "flow/FastRef.h"
#include "flow/Trace.h"
#include "flow/genericactors.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
std::vector<std::string> LoadedTLSConfig::getVerifyPeers() const {
if (tlsVerifyPeers.size()) {
return tlsVerifyPeers;
}
std::string envVerifyPeers;
if (platform::getEnvironmentVar("FDB_TLS_VERIFY_PEERS", envVerifyPeers)) {
return { envVerifyPeers };
}
return { "Check.Valid=1" };
}
bool LoadedTLSConfig::getDisablePlainTextConnection() const {
return tlsDisablePlainTextConnection;
}
std::string LoadedTLSConfig::getPassword() const {
if (tlsPassword.size()) {
return tlsPassword;
}
std::string envPassword;
platform::getEnvironmentVar("FDB_TLS_PASSWORD", envPassword);
return envPassword;
}
void LoadedTLSConfig::print(FILE* fp) {
int num_certs = 0;
boost::asio::ssl::context context(boost::asio::ssl::context::tls);
try {
ConfigureSSLContext(*this, context);
} catch (Error& e) {
fprintf(fp, "There was an error in loading the certificate chain.\n");
throw;
}
X509_STORE* store = SSL_CTX_get_cert_store(context.native_handle());
X509_STORE_CTX* store_ctx = X509_STORE_CTX_new();
X509* cert = SSL_CTX_get0_certificate(context.native_handle());
X509_STORE_CTX_init(store_ctx, store, cert, nullptr);
X509_verify_cert(store_ctx);
STACK_OF(X509)* chain = X509_STORE_CTX_get0_chain(store_ctx);
X509_print_fp(fp, cert);
num_certs = sk_X509_num(chain);
if (num_certs) {
for (int i = 0; i < num_certs; i++) {
printf("\n");
X509* cert = sk_X509_value(chain, i);
X509_print_fp(fp, cert);
}
}
X509_STORE_CTX_free(store_ctx);
}
void ConfigureSSLContext(const LoadedTLSConfig& loaded, boost::asio::ssl::context& context) {
try {
context.set_options(boost::asio::ssl::context::default_workarounds);
auto verifyFailIfNoPeerCert = boost::asio::ssl::verify_fail_if_no_peer_cert;
// Servers get to accept connections without peer certs as "untrusted" clients
if (loaded.getEndpointType() == TLSEndpointType::SERVER)
verifyFailIfNoPeerCert = 0;
context.set_verify_mode(boost::asio::ssl::context::verify_peer | verifyFailIfNoPeerCert);
context.set_password_callback([password = loaded.getPassword()](
size_t, boost::asio::ssl::context::password_purpose) { return password; });
const std::string& CABytes = loaded.getCABytes();
if (CABytes.size()) {
context.add_certificate_authority(boost::asio::buffer(CABytes.data(), CABytes.size()));
}
const std::string& keyBytes = loaded.getKeyBytes();
if (keyBytes.size()) {
context.use_private_key(boost::asio::buffer(keyBytes.data(), keyBytes.size()),
boost::asio::ssl::context::pem);
}
const std::string& certBytes = loaded.getCertificateBytes();
if (certBytes.size()) {
context.use_certificate_chain(boost::asio::buffer(certBytes.data(), certBytes.size()));
}
} catch (boost::system::system_error& e) {
TraceEvent("TLSContextConfigureError")
.detail("What", e.what())
.detail("Value", e.code().value())
.detail("WhichMeans", TLSPolicy::ErrorString(e.code()));
throw tls_error();
}
}
void ConfigureSSLStream(Reference<TLSPolicy> policy,
boost::asio::ssl::stream<boost::asio::ip::tcp::socket&>& stream,
const NetworkAddress& peerAddress,
std::function<void(bool)> callback) {
try {
stream.set_verify_callback(
[policy, peerAddress, callback](bool preverified, boost::asio::ssl::verify_context& ctx) {
bool success = policy->verify_peer(preverified, ctx.native_handle(), peerAddress);
if (!success) {
if (policy->on_failure)
policy->on_failure();
}
if (callback) {
callback(success);
}
return success;
});
} catch (boost::system::system_error& e) {
TraceEvent("TLSStreamConfigureError")
.detail("What", e.what())
.detail("Value", e.code().value())
.detail("WhichMeans", TLSPolicy::ErrorString(e.code()));
throw tls_error();
}
}
std::string TLSConfig::getCertificatePathSync() const {
if (tlsCertPath.size()) {
return tlsCertPath;
}
std::string envCertPath;
if (platform::getEnvironmentVar("FDB_TLS_CERTIFICATE_FILE", envCertPath)) {
return envCertPath;
}
const char* defaultCertFileName = "cert.pem";
if (fileExists(joinPath(platform::getDefaultConfigPath(), defaultCertFileName))) {
return joinPath(platform::getDefaultConfigPath(), defaultCertFileName);
}
return std::string();
}
std::string TLSConfig::getKeyPathSync() const {
if (tlsKeyPath.size()) {
return tlsKeyPath;
}
std::string envKeyPath;
if (platform::getEnvironmentVar("FDB_TLS_KEY_FILE", envKeyPath)) {
return envKeyPath;
}
const char* defaultKeyFileName = "key.pem";
if (fileExists(joinPath(platform::getDefaultConfigPath(), defaultKeyFileName))) {
return joinPath(platform::getDefaultConfigPath(), defaultKeyFileName);
}
return std::string();
}
std::string TLSConfig::getCAPathSync() const {
if (tlsCAPath.size()) {
return tlsCAPath;
}
std::string envCAPath;
platform::getEnvironmentVar("FDB_TLS_CA_FILE", envCAPath);
return envCAPath;
}
bool TLSConfig::getDisablePlainTextConnection() const {
std::string envDisablePlainTextConnection;
if (platform::getEnvironmentVar("FDB_TLS_DISABLE_PLAINTEXT_CONNECTION", envDisablePlainTextConnection)) {
try {
return boost::lexical_cast<bool>(envDisablePlainTextConnection);
} catch (boost::bad_lexical_cast& e) {
fprintf(stderr,
"Warning: Ignoring invalid FDB_TLS_DISABLE_PLAINTEXT_CONNECTION [%s]: %s\n",
envDisablePlainTextConnection.c_str(),
e.what());
}
}
return tlsDisablePlainTextConnection;
}
LoadedTLSConfig TLSConfig::loadSync() const {
LoadedTLSConfig loaded;
const std::string certPath = getCertificatePathSync();
if (certPath.size()) {
try {
loaded.tlsCertBytes = readFileBytes(certPath, FLOW_KNOBS->CERT_FILE_MAX_SIZE);
} catch (Error& e) {
fprintf(stderr, "Warning: Error reading TLS Certificate [%s]: %s\n", certPath.c_str(), e.what());
throw;
}
} else {
loaded.tlsCertBytes = tlsCertBytes;
}
const std::string keyPath = getKeyPathSync();
if (keyPath.size()) {
try {
loaded.tlsKeyBytes = readFileBytes(keyPath, FLOW_KNOBS->CERT_FILE_MAX_SIZE);
} catch (Error& e) {
fprintf(stderr, "Warning: Error reading TLS Key [%s]: %s\n", keyPath.c_str(), e.what());
throw;
}
} else {
loaded.tlsKeyBytes = tlsKeyBytes;
}
const std::string CAPath = getCAPathSync();
if (CAPath.size()) {
try {
loaded.tlsCABytes = readFileBytes(CAPath, FLOW_KNOBS->CERT_FILE_MAX_SIZE);
} catch (Error& e) {
fprintf(stderr, "Warning: Error reading TLS CA [%s]: %s\n", CAPath.c_str(), e.what());
throw;
}
} else {
loaded.tlsCABytes = tlsCABytes;
}
loaded.tlsPassword = tlsPassword;
loaded.tlsVerifyPeers = tlsVerifyPeers;
loaded.endpointType = endpointType;
loaded.tlsDisablePlainTextConnection = tlsDisablePlainTextConnection;
return loaded;
}
TLSPolicy::TLSPolicy(const LoadedTLSConfig& loaded, std::function<void()> on_failure)
: rules(), on_failure(std::move(on_failure)), is_client(loaded.getEndpointType() == TLSEndpointType::CLIENT) {
set_verify_peers(loaded.getVerifyPeers());
}
// And now do the same thing, but async...
ACTOR static Future<Void> readEntireFile(std::string filename, std::string* destination) {
state Reference<IAsyncFile> file =
wait(IAsyncFileSystem::filesystem()->open(filename, IAsyncFile::OPEN_READONLY | IAsyncFile::OPEN_UNCACHED, 0));
state int64_t filesize = wait(file->size());
if (filesize > FLOW_KNOBS->CERT_FILE_MAX_SIZE) {
throw file_too_large();
}
destination->resize(filesize);
wait(success(file->read(&((*destination)[0]), filesize, 0)));
return Void();
}
ACTOR Future<LoadedTLSConfig> TLSConfig::loadAsync(const TLSConfig* self) {
state LoadedTLSConfig loaded;
state std::vector<Future<Void>> reads;
state int32_t certIdx = -1;
state int32_t keyIdx = -1;
state int32_t caIdx = -1;
state std::string certPath = self->getCertificatePathSync();
if (certPath.size()) {
reads.push_back(readEntireFile(certPath, &loaded.tlsCertBytes));
certIdx = reads.size() - 1;
} else {
loaded.tlsCertBytes = self->tlsCertBytes;
}
state std::string keyPath = self->getKeyPathSync();
if (keyPath.size()) {
reads.push_back(readEntireFile(keyPath, &loaded.tlsKeyBytes));
keyIdx = reads.size() - 1;
} else {
loaded.tlsKeyBytes = self->tlsKeyBytes;
}
state std::string CAPath = self->getCAPathSync();
if (CAPath.size()) {
reads.push_back(readEntireFile(CAPath, &loaded.tlsCABytes));
caIdx = reads.size() - 1;
} else {
loaded.tlsCABytes = self->tlsCABytes;
}
try {
wait(waitForAll(reads));
} catch (Error& e) {
if (certIdx != -1 && reads[certIdx].isError()) {
fprintf(stderr, "Warning: Error reading TLS Certificate [%s]: %s\n", certPath.c_str(), e.what());
} else if (keyIdx != -1 && reads[keyIdx].isError()) {
fprintf(stderr, "Warning: Error reading TLS Key [%s]: %s\n", keyPath.c_str(), e.what());
} else if (caIdx != -1 && reads[caIdx].isError()) {
fprintf(stderr, "Warning: Error reading TLS Key [%s]: %s\n", CAPath.c_str(), e.what());
} else {
fprintf(stderr, "Warning: Error reading TLS needed file: %s\n", e.what());
}
throw;
}
loaded.tlsPassword = self->tlsPassword;
loaded.tlsVerifyPeers = self->tlsVerifyPeers;
loaded.endpointType = self->endpointType;
loaded.tlsDisablePlainTextConnection = self->tlsDisablePlainTextConnection;
return loaded;
}
std::string TLSPolicy::ErrorString(boost::system::error_code e) {
char* str = ERR_error_string(e.value(), nullptr);
return std::string(str);
}
std::string TLSPolicy::toString() const {
std::stringstream ss;
ss << "TLSPolicy{ Rules=[";
for (const auto& r : rules) {
ss << " " << r.toString() << ",";
}
ss << " ] }";
return ss.str();
}
std::string TLSPolicy::Rule::toString() const {
std::stringstream ss;
ss << "Rule{ verify_cert=" << verify_cert << ", verify_time=" << verify_time;
ss << ", Subject=[";
for (const auto& s : subject_criteria) {
ss << " { NID=" << s.first << ", Criteria=" << s.second.criteria << "},";
}
ss << " ], Issuer=[";
for (const auto& s : issuer_criteria) {
ss << " { NID=" << s.first << ", Criteria=" << s.second.criteria << "},";
}
ss << " ], Root=[";
for (const auto& s : root_criteria) {
ss << " { NID=" << s.first << ", Criteria=" << s.second.criteria << "},";
}
ss << " ] }";
return ss.str();
}
static int hexValue(char c) {
static char const digits[] = "0123456789ABCDEF";
if (c >= 'a' && c <= 'f')
c -= ('a' - 'A');
int value = std::find(digits, digits + 16, c) - digits;
if (value >= 16) {
throw std::runtime_error("hexValue");
}
return value;
}
// Does not handle "raw" form (e.g. #28C4D1), only escaped text
static std::string de4514(std::string const& input, int start, int& out_end) {
std::string output;
if (input[start] == '#' || input[start] == ' ') {
out_end = start;
return output;
}
int space_count = 0;
for (int p = start; p < input.size();) {
switch (input[p]) {
case '\\': // Handle escaped sequence
// Backslash escaping nothing!
if (p == input.size() - 1) {
out_end = p;
goto FIN;
}
switch (input[p + 1]) {
case ' ':
case '"':
case '#':
case '+':
case ',':
case ';':
case '<':
case '=':
case '>':
case '|':
case '\\':
output += input[p + 1];
p += 2;
space_count = 0;
continue;
default:
// Backslash escaping pair of hex digits requires two characters
if (p == input.size() - 2) {
out_end = p;
goto FIN;
}
try {
output += hexValue(input[p + 1]) * 16 + hexValue(input[p + 2]);
p += 3;
space_count = 0;
continue;
} catch (...) {
out_end = p;
goto FIN;
}
}
case '"':
case '+':
case ',':
case ';':
case '<':
case '>':
case 0:
// All of these must have been escaped
out_end = p;
goto FIN;
default:
// Character is what it is
output += input[p];
if (input[p] == ' ')
space_count++;
else
space_count = 0;
p++;
}
}
out_end = input.size();
FIN:
out_end -= space_count;
output.resize(output.size() - space_count);
return output;
}
static std::pair<std::string, std::string> splitPair(std::string const& input, char c) {
int p = input.find_first_of(c);
if (p == input.npos) {
throw std::runtime_error("splitPair");
}
return std::make_pair(input.substr(0, p), input.substr(p + 1, input.size()));
}
static NID abbrevToNID(std::string const& sn) {
NID nid = NID_undef;
if (sn == "C" || sn == "CN" || sn == "L" || sn == "ST" || sn == "O" || sn == "OU" || sn == "UID" || sn == "DC" ||
sn == "subjectAltName")
nid = OBJ_sn2nid(sn.c_str());
if (nid == NID_undef)
throw std::runtime_error("abbrevToNID");
return nid;
}
static X509Location locationForNID(NID nid) {
const char* name = OBJ_nid2ln(nid);
if (name == nullptr) {
throw std::runtime_error("locationForNID");
}
if (strncmp(name, "X509v3", 6) == 0) {
return X509Location::EXTENSION;
} else {
// It probably isn't true that all other NIDs live in the NAME, but it is for now...
return X509Location::NAME;
}
}
void TLSPolicy::set_verify_peers(std::vector<std::string> verify_peers) {
for (int i = 0; i < verify_peers.size(); i++) {
try {
std::string& verifyString = verify_peers[i];
int start = 0;
while (start < verifyString.size()) {
int split = verifyString.find('|', start);
if (split == std::string::npos) {
break;
}
if (split == start || verifyString[split - 1] != '\\') {
rules.emplace_back(verifyString.substr(start, split - start));
start = split + 1;
}
}
rules.emplace_back(verifyString.substr(start));
} catch (const std::runtime_error& e) {
rules.clear();
std::string& verifyString = verify_peers[i];
TraceEvent(SevError, "FDBLibTLSVerifyPeersParseError").detail("Config", verifyString);
throw tls_error();
}
}
}
TLSPolicy::Rule::Rule(std::string input) {
int s = 0;
while (s < input.size()) {
int eq = input.find('=', s);
if (eq == input.npos)
throw std::runtime_error("parse_verify");
MatchType mt = MatchType::EXACT;
if (input[eq - 1] == '>')
mt = MatchType::PREFIX;
if (input[eq - 1] == '<')
mt = MatchType::SUFFIX;
std::string term = input.substr(s, eq - s - (mt == MatchType::EXACT ? 0 : 1));
if (term.find("Check.") == 0) {
if (eq + 2 > input.size())
throw std::runtime_error("parse_verify");
if (eq + 2 != input.size() && input[eq + 2] != ',')
throw std::runtime_error("parse_verify");
if (mt != MatchType::EXACT)
throw std::runtime_error("parse_verify: cannot prefix match Check");
bool* flag;
if (term == "Check.Valid")
flag = &verify_cert;
else if (term == "Check.Unexpired")
flag = &verify_time;
else
throw std::runtime_error("parse_verify");
if (input[eq + 1] == '0')
*flag = false;
else if (input[eq + 1] == '1')
*flag = true;
else
throw std::runtime_error("parse_verify");
s = eq + 3;
} else {
std::map<int, Criteria>* criteria = &subject_criteria;
if (term.find('.') != term.npos) {
auto scoped = splitPair(term, '.');
if (scoped.first == "S" || scoped.first == "Subject")
criteria = &subject_criteria;
else if (scoped.first == "I" || scoped.first == "Issuer")
criteria = &issuer_criteria;
else if (scoped.first == "R" || scoped.first == "Root")
criteria = &root_criteria;
else
throw std::runtime_error("parse_verify");
term = scoped.second;
}
int remain;
auto unesc = de4514(input, eq + 1, remain);
if (remain == eq + 1)
throw std::runtime_error("parse_verify");
NID termNID = abbrevToNID(term);
const X509Location loc = locationForNID(termNID);
criteria->insert(std::make_pair(termNID, Criteria(unesc, mt, loc)));
if (remain != input.size() && input[remain] != ',')
throw std::runtime_error("parse_verify");
s = remain + 1;
}
}
}
namespace {
// Free an object that allocated by OpenSSL.
// Since in openssl/crypto.h the OPENSSL_free function is actuall a macro expanded
// to CRYPTO_free, to enable RAII on OpenSSL allocated resources, it is necessary
// to wrap the CRYPTO_free;
inline void OPENSSL_free_impl(void* ptr) {
CRYPTO_free(ptr, OPENSSL_FILE, OPENSSL_LINE);
}
// Free an object of GENERAL_NAME
inline void GENERAL_NAME_free_impl(struct stack_st_GENERAL_NAME* ptr) {
sk_GENERAL_NAME_pop_free(ptr, GENERAL_NAME_free);
}
bool match_criteria_entry(const std::string_view criteria, const ASN1_STRING* entry, const MatchType match_type) {
// Well, ScopeExit.h:ScopeExit should also work but unique_ptr is easier
std::unique_ptr<ASN1_STRING, decltype(&ASN1_STRING_free)> asn_criteria(ASN1_IA5STRING_new(), ASN1_STRING_free);
if (!asn_criteria) {
return false;
}
if (ASN1_STRING_set(asn_criteria.get(), &criteria[0], criteria.size()) != 1) {
return false;
}
unsigned char* criteria_utf8_ptr;
int criteria_utf8_len = ASN1_STRING_to_UTF8(&criteria_utf8_ptr, asn_criteria.get());
if (criteria_utf8_len < 1) {
return false;
}
std::unique_ptr<unsigned char, decltype(&OPENSSL_free_impl)> criteria_utf8(criteria_utf8_ptr, OPENSSL_free_impl);
unsigned char* entry_utf8_ptr = nullptr;
int entry_utf8_len = ASN1_STRING_to_UTF8(&entry_utf8_ptr, entry);
if (entry_utf8_len < 1) {
return false;
}
std::unique_ptr<unsigned char, decltype(&OPENSSL_free_impl)> entry_utf8(entry_utf8_ptr, OPENSSL_free_impl);
switch (match_type) {
case MatchType::EXACT:
return (criteria_utf8_len == entry_utf8_len &&
memcmp(criteria_utf8.get(), entry_utf8.get(), criteria_utf8_len) == 0);
case MatchType::PREFIX:
return (criteria_utf8_len <= entry_utf8_len &&
memcmp(criteria_utf8.get(), entry_utf8.get(), criteria_utf8_len) == 0);
case MatchType::SUFFIX:
return (criteria_utf8_len <= entry_utf8_len && memcmp(criteria_utf8.get(),
entry_utf8.get() + (entry_utf8_len - criteria_utf8_len),
criteria_utf8_len) == 0);
default:
UNREACHABLE();
}
}
class PeerVerifier {
const std::vector<TLSPolicy::Rule>& m_rules;
X509_STORE_CTX* m_storeCtx;
bool m_verified;
std::string_view m_successReason;
std::vector<std::string_view> m_verifyState;
std::string m_currentName;
std::string m_currentExtension;
std::vector<std::string> m_failureReasons;
bool matchNameCriteria(X509_NAME* name, const NID nid, std::string_view criteria, const MatchType matchType);
bool matchExtensionCriteria(const X509* cert, const NID nid, std::string_view criteria, const MatchType matchType);
bool matchCriteria(const X509* cert, X509_NAME* name, const NID nid, const Criteria& criteria);
// Verify a set of criteria
bool verifyCriterias(const X509* cert, X509_NAME* name, const TLSPolicy::Rule::CriteriaMap& criterias);
// Verify a single rule
bool verifyRule(const TLSPolicy::Rule&);
// Verify the TLSPolicy peer
bool verify();
public:
PeerVerifier(const std::vector<TLSPolicy::Rule>& rules, X509_STORE_CTX* store_ctx)
: m_rules(rules), m_storeCtx(store_ctx), m_successReason(), m_verifyState() {
ASSERT(m_storeCtx != nullptr);
// Prealloc 32 * sizeof(const char*) to avoid reallocation, this should be sufficient
m_verifyState.reserve(32);
m_verified = verify();
}
bool isOk() const noexcept { return m_verified; }
bool isErr() const noexcept { return !isOk(); }
const std::vector<std::string>& getFailureReasons() const noexcept { return m_failureReasons; }
const std::string_view getSuccessReason() const noexcept { return m_successReason; }
};
std::string getX509Name(const X509_NAME* name) {
std::unique_ptr<BIO, decltype(&BIO_free)> out(BIO_new(BIO_s_mem()), BIO_free);
if (out == nullptr) {
throw internal_error_msg("Unable to allocate OpenSSL BIO");
}
X509_NAME_print_ex(out.get(), name, /* indent= */ 0, /* flags */ XN_FLAG_ONELINE);
unsigned char* rawName = nullptr;
int length = BIO_get_mem_data(out.get(), &rawName);
std::string result = (char*)rawName;
ASSERT_EQ(result.size(), size_t(length));
return result;
}
// From v3_genn.c, GENERAL_NAME->type is int
using GeneralNameType = int;
using namespace std::literals::string_view_literals;
const std::unordered_map<GeneralNameType, std::string_view> UNSUPPORTED_GENERAL_NAME_TYPES = {
{ GEN_OTHERNAME, "GEN_OTHERNAME"sv },
{ GEN_X400, "GEN_X400"sv },
{ GEN_DIRNAME, "GEN_DIRNAME"sv },
{ GEN_EDIPARTY, "GEN_EDIPARTY"sv },
{ GEN_RID, "GEN_RID"sv }
};
bool PeerVerifier::matchExtensionCriteria(const X509* cert,
const NID nid,
std::string_view criteria,
const MatchType matchType) {
// Only support NID_subject_alt_name and NID_issuer_alt_name
if (nid != NID_subject_alt_name && nid != NID_issuer_alt_name) {
m_verifyState.emplace_back("UnsupportedNIDExtensionType"sv);
return false;
}
std::unique_ptr<STACK_OF(GENERAL_NAME), decltype(&GENERAL_NAME_free_impl)> sans(
static_cast<STACK_OF(GENERAL_NAME)*>(X509_get_ext_d2i(cert, nid, nullptr, nullptr)), GENERAL_NAME_free_impl);
if (sans == nullptr) {
m_verifyState.emplace_back("EmptySans"sv);
return false;
}
int numSans = sk_GENERAL_NAME_num(sans.get());
auto checkCriteriaEntry = [matchType, &criteria](const std::string_view prefix, const ASN1_STRING* entry) -> bool {
return criteria.starts_with(prefix) && match_criteria_entry(criteria.substr(prefix.size()), entry, matchType);
};
for (int i = 0; i < numSans; ++i) {
GENERAL_NAME* altName = sk_GENERAL_NAME_value(sans.get(), i);
// See openssl/include/openssl/x509v3.h.in for more details about GENERAL_NAME
const auto altNameType = altName->type;
if (UNSUPPORTED_GENERAL_NAME_TYPES.contains(altNameType)) {
m_verifyState.emplace_back(UNSUPPORTED_GENERAL_NAME_TYPES.at(altNameType));
return false;
}
if (altNameType == GEN_EMAIL) {
if (checkCriteriaEntry("EMAIL:", altName->d.rfc822Name)) {
return true;
}
} else if (altNameType == GEN_DNS) {
if (checkCriteriaEntry("DNS:", altName->d.dNSName)) {
return true;
}
} else if (altNameType == GEN_URI) {
if (checkCriteriaEntry("URI:", altName->d.uniformResourceIdentifier)) {
return true;
}
} else if (altNameType == GEN_IPADD) {
if (checkCriteriaEntry("IP:", altName->d.iPAddress)) {
return true;
}
}
// Ignore other types
}
// No entry matches
m_verifyState.emplace_back("NoMatchingEntry"sv);
return false;
}
bool PeerVerifier::matchNameCriteria(X509_NAME* name,
const NID nid,
std::string_view criteria,
const MatchType matchType) {
if (int index = X509_NAME_get_index_by_NID(name, nid, -1); index >= 0) {
if (X509_NAME_get_index_by_NID(name, nid, index) != -1) {
m_verifyState.emplace_back("MultipleNames"sv);
} else {
if (X509_NAME_ENTRY* nameEntry = X509_NAME_get_entry(name, index); nameEntry == nullptr) {
m_verifyState.emplace_back("MissingNameEntry"sv);
} else {
m_currentName = getX509Name(name);
if (match_criteria_entry(criteria, X509_NAME_ENTRY_get_data(nameEntry), matchType)) {
return true;
}
m_verifyState.emplace_back("NameMismatch"sv);
}
}
} else {
m_verifyState.emplace_back("Missing"sv);
}
return false;
}
bool PeerVerifier::matchCriteria(const X509* cert, X509_NAME* name, const NID nid, const Criteria& criteria) {
bool result = false;
switch (criteria.location) {
case X509Location::NAME:
m_verifyState.emplace_back("Name"sv);
result = matchNameCriteria(name, nid, criteria.criteria, criteria.match_type);
break;
case X509Location::EXTENSION:
m_verifyState.emplace_back("Extension"sv);
m_currentExtension = criteria.criteria;
result = matchExtensionCriteria(cert, nid, criteria.criteria, criteria.match_type);
break;
default:
// Base on the enum this should NEVER happen
m_verifyState.emplace_back("UnsupportedX509LocationValue"sv);
}
if (result) {
m_currentName.clear();
m_currentExtension.clear();
m_verifyState.pop_back();
}
return result;
}
bool PeerVerifier::verifyCriterias(const X509* cert, X509_NAME* name, const TLSPolicy::Rule::CriteriaMap& criterias) {
for (const auto& [nid, criteria] : criterias) {
if (!matchCriteria(cert, name, nid, criteria)) {
return false;
}
}
return true;
}
bool PeerVerifier::verifyRule(const TLSPolicy::Rule& rule) {
m_verifyState.emplace_back("Rule"sv);
{
m_verifyState.emplace_back("Cert");
const X509* cert = sk_X509_value(X509_STORE_CTX_get0_chain(m_storeCtx), 0);
ASSERT(cert != nullptr);
m_verifyState.emplace_back("Subject"sv);
if (auto subject = X509_get_subject_name(cert); subject != nullptr) {
if (!verifyCriterias(cert, subject, rule.subject_criteria)) {
return false;
}
} else {
m_verifyState.emplace_back("Missing"sv);
return false;
}
m_verifyState.pop_back();
m_verifyState.emplace_back("Issuer");
if (auto issuer = X509_get_issuer_name(cert); issuer != nullptr) {
if (!verifyCriterias(cert, issuer, rule.issuer_criteria)) {
return false;
}
} else {
m_verifyState.emplace_back("Missing"sv);
return false;
}
m_verifyState.pop_back();
m_verifyState.pop_back();
}
{
const auto chain = X509_STORE_CTX_get0_chain(m_storeCtx);
const auto numItems = sk_X509_num(chain);
const X509* rootCert = sk_X509_value(chain, numItems - 1);
ASSERT(rootCert != nullptr);
m_verifyState.emplace_back("RootCert.Subject");
if (auto subject = X509_get_subject_name(rootCert); subject != nullptr) {
if (!verifyCriterias(rootCert, subject, rule.root_criteria)) {
return false;
}
} else {
m_verifyState.emplace_back("Missing"sv);
return false;
}
m_verifyState.pop_back();
}
m_verifyState.pop_back();
return true;
}
bool PeerVerifier::verify() {
if (m_rules.size() == 0) {
m_successReason = "No rule defined"sv;
return true;
}
if (std::any_of(std::begin(m_rules), std::end(m_rules), [](const auto& rule) { return !rule.verify_cert; })) {
m_successReason = "At least one certificate verfications rule disabled"sv;
return true;
}
for (const auto& rule : m_rules) {
if (verifyRule(rule)) {
m_successReason = "Rule matched successfully"sv;
ASSERT(m_currentName.empty() && m_currentExtension.empty() && m_verifyState.empty());
return true;
} else {
std::string failureReason;
// Prevent realloc
failureReason.reserve(1024);
for (const auto& item : m_verifyState) {
failureReason.append(item);
failureReason.push_back('.');
}
failureReason.pop_back();
m_verifyState.clear();
if (!m_currentName.empty()) {
failureReason.append("[Name="sv);
failureReason.append(m_currentName);
failureReason.append("]"sv);
m_currentName.clear();
}
if (!m_currentExtension.empty()) {
failureReason.append("[Extension="sv);
failureReason.append(m_currentExtension);
failureReason.append("]"sv);
m_currentExtension.clear();
}
m_failureReasons.push_back(std::move(failureReason));
}
}
// No rule matched
return false;
}
} // anonymous namespace
bool TLSPolicy::verify_peer(bool preverified, X509_STORE_CTX* store_ctx, const NetworkAddress& peerAddress) {
// Preverification
if (!preverified) {
TraceEvent(SevWarn, "TLSPolicyFailure")
.suppressFor(1.0)
.detail("PeerAddress", peerAddress)
.detail("Reason", "preverification failed")
.detail("VerifyError", X509_verify_cert_error_string(X509_STORE_CTX_get_error(store_ctx)));
return false;
}
PeerVerifier verifier(rules, store_ctx);
if (verifier.isErr()) {
// Must have all rules tried with failure
ASSERT_EQ(verifier.getFailureReasons().size(), rules.size());
for (size_t i = 0; i < rules.size(); ++i) {
const auto& failureReason = verifier.getFailureReasons()[i];
const auto& rule = rules[i];
std::string eventName = fmt::format("TLSPolicyFailure{:02d}", i);
TraceEvent(SevWarn, eventName.c_str())
.suppressFor(1.0)
.detail("PeerAddress", peerAddress)
.detail("Reason", failureReason)
.detail("Rule", rule.toString());
}
} else {
TraceEvent(SevInfo, "TLSPolicySuccess")
.suppressFor(1.0)
.detail("PeerAddress", peerAddress)
.detail("Reason", verifier.getSuccessReason());
}
return verifier.isOk();
}