/* * StorageMetrics.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2022 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flow/UnitTest.h" #include "fdbserver/StorageMetrics.h" #include "flow/actorcompiler.h" // This must be the last #include. int64_t StorageMetricSample::getEstimate(KeyRangeRef keys) const { return sample.sumRange(keys.begin, keys.end); } KeyRef StorageMetricSample::splitEstimate(KeyRangeRef range, int64_t offset, bool front) const { auto fwd_split = sample.index(front ? sample.sumTo(sample.lower_bound(range.begin)) + offset : sample.sumTo(sample.lower_bound(range.end)) - offset); if (fwd_split == sample.end() || *fwd_split >= range.end) return range.end; if (!front && *fwd_split <= range.begin) return range.begin; auto bck_split = fwd_split; // Butterfly search - start at midpoint then go in both directions. while ((fwd_split != sample.end() && *fwd_split < range.end) || (bck_split != sample.begin() && *bck_split > range.begin)) { if (bck_split != sample.begin() && *bck_split > range.begin) { auto it = bck_split; bck_split.decrementNonEnd(); KeyRef split = keyBetween(KeyRangeRef( bck_split != sample.begin() ? std::max(*bck_split, range.begin) : range.begin, *it)); if (!front || (getEstimate(KeyRangeRef(range.begin, split)) > 0 && split.size() <= CLIENT_KNOBS->SPLIT_KEY_SIZE_LIMIT)) return split; } if (fwd_split != sample.end() && *fwd_split < range.end) { auto it = fwd_split; ++it; KeyRef split = keyBetween(KeyRangeRef(*fwd_split, it != sample.end() ? std::min(*it, range.end) : range.end)); if (front || (getEstimate(KeyRangeRef(split, range.end)) > 0 && split.size() <= CLIENT_KNOBS->SPLIT_KEY_SIZE_LIMIT)) return split; fwd_split = it; } } // If we didn't return above, we didn't find anything. TraceEvent(SevWarn, "CannotSplitLastSampleKey").detail("Range", range).detail("Offset", offset); return front ? range.end : range.begin; } // Get the current estimated metrics for the given keys StorageMetrics StorageServerMetrics::getMetrics(KeyRangeRef const& keys) const { StorageMetrics result; result.bytes = byteSample.getEstimate(keys); result.bytesPerKSecond = bandwidthSample.getEstimate(keys) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; result.iosPerKSecond = iopsSample.getEstimate(keys) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; result.bytesReadPerKSecond = bytesReadSample.getEstimate(keys) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; return result; } // Called when metrics should change (IO for a given key) // Notifies waiting WaitMetricsRequests through waitMetricsMap, and updates metricsAverageQueue and metricsSampleMap void StorageServerMetrics::notify(KeyRef key, StorageMetrics& metrics) { ASSERT(metrics.bytes == 0); // ShardNotifyMetrics if (g_network->isSimulated()) { CODE_PROBE(metrics.bytesPerKSecond != 0, "ShardNotifyMetrics bytes"); CODE_PROBE(metrics.iosPerKSecond != 0, "ShardNotifyMetrics ios"); CODE_PROBE(metrics.bytesReadPerKSecond != 0, "ShardNotifyMetrics bytesRead", probe::decoration::rare); } double expire = now() + SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL; StorageMetrics notifyMetrics; if (metrics.bytesPerKSecond) notifyMetrics.bytesPerKSecond = bandwidthSample.addAndExpire(key, metrics.bytesPerKSecond, expire) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; if (metrics.iosPerKSecond) notifyMetrics.iosPerKSecond = iopsSample.addAndExpire(key, metrics.iosPerKSecond, expire) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; if (metrics.bytesReadPerKSecond) notifyMetrics.bytesReadPerKSecond = bytesReadSample.addAndExpire(key, metrics.bytesReadPerKSecond, expire) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; if (!notifyMetrics.allZero()) { auto& v = waitMetricsMap[key]; for (int i = 0; i < v.size(); i++) { if (g_network->isSimulated()) { CODE_PROBE(true, "shard notify metrics"); } // ShardNotifyMetrics v[i].send(notifyMetrics); } } } // Due to the fact that read sampling will be called on all reads, use this specialized function to avoid overhead // around branch misses and unnecessary stack allocation which eventually addes up under heavy load. void StorageServerMetrics::notifyBytesReadPerKSecond(KeyRef key, int64_t in) { double expire = now() + SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL; int64_t bytesReadPerKSecond = bytesReadSample.addAndExpire(key, in, expire) * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; if (bytesReadPerKSecond > 0) { StorageMetrics notifyMetrics; notifyMetrics.bytesReadPerKSecond = bytesReadPerKSecond; auto& v = waitMetricsMap[key]; for (int i = 0; i < v.size(); i++) { CODE_PROBE(true, "ShardNotifyMetrics"); v[i].send(notifyMetrics); } } } // Called by StorageServerDisk when the size of a key in byteSample changes, to notify WaitMetricsRequest // Should not be called for keys past allKeys.end void StorageServerMetrics::notifyBytes( RangeMap>, KeyRangeRef>::iterator shard, int64_t bytes) { ASSERT(shard.end() <= allKeys.end); StorageMetrics notifyMetrics; notifyMetrics.bytes = bytes; for (int i = 0; i < shard.value().size(); i++) { CODE_PROBE(true, "notifyBytes"); shard.value()[i].send(notifyMetrics); } } // Called by StorageServerDisk when the size of a key in byteSample changes, to notify WaitMetricsRequest void StorageServerMetrics::notifyBytes(KeyRef key, int64_t bytes) { if (key >= allKeys.end) // Do not notify on changes to internal storage server state return; notifyBytes(waitMetricsMap.rangeContaining(key), bytes); } // Called when a range of keys becomes unassigned (and therefore not readable), to notify waiting // WaitMetricsRequests (also other types of wait // requests in the future?) void StorageServerMetrics::notifyNotReadable(KeyRangeRef keys) { auto rs = waitMetricsMap.intersectingRanges(keys); for (auto r = rs.begin(); r != rs.end(); ++r) { auto& v = r->value(); CODE_PROBE(v.size(), "notifyNotReadable() sending errors to intersecting ranges"); for (int n = 0; n < v.size(); n++) v[n].sendError(wrong_shard_server()); } } // Called periodically (~1 sec intervals) to remove older IOs from the averages // Removes old entries from metricsAverageQueue, updates metricsSampleMap accordingly, and notifies // WaitMetricsRequests through waitMetricsMap. void StorageServerMetrics::poll() { { StorageMetrics m; m.bytesPerKSecond = SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; bandwidthSample.poll(waitMetricsMap, m); } { StorageMetrics m; m.iosPerKSecond = SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; iopsSample.poll(waitMetricsMap, m); } { StorageMetrics m; m.bytesReadPerKSecond = SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS; bytesReadSample.poll(waitMetricsMap, m); } // bytesSample doesn't need polling because we never call addExpire() on it } // This function can run on untrusted user data. We must validate all divisions carefully. KeyRef StorageServerMetrics::getSplitKey(int64_t remaining, int64_t estimated, int64_t limits, int64_t used, int64_t infinity, bool isLastShard, const StorageMetricSample& sample, double divisor, KeyRef const& lastKey, KeyRef const& key, bool hasUsed) const { ASSERT(remaining >= 0); ASSERT(limits > 0); ASSERT(divisor > 0); if (limits < infinity / 2) { int64_t expectedSize; if (isLastShard || remaining > estimated) { double remaining_divisor = (double(remaining) / limits) + 0.5; expectedSize = remaining / remaining_divisor; } else { // If we are here, then estimated >= remaining >= 0 double estimated_divisor = (double(estimated) / limits) + 0.5; expectedSize = remaining / estimated_divisor; } if (remaining > expectedSize) { // This does the conversion from native units to bytes using the divisor. double offset = (expectedSize - used) / divisor; if (offset <= 0) return hasUsed ? lastKey : key; return sample.splitEstimate( KeyRangeRef(lastKey, key), offset * ((1.0 - SERVER_KNOBS->SPLIT_JITTER_AMOUNT) + 2 * deterministicRandom()->random01() * SERVER_KNOBS->SPLIT_JITTER_AMOUNT)); } } return key; } void StorageServerMetrics::splitMetrics(SplitMetricsRequest req) const { int minSplitBytes = req.minSplitBytes.present() ? req.minSplitBytes.get() : SERVER_KNOBS->MIN_SHARD_BYTES; try { SplitMetricsReply reply; KeyRef lastKey = req.keys.begin; StorageMetrics used = req.used; StorageMetrics estimated = req.estimated; StorageMetrics remaining = getMetrics(req.keys) + used; //TraceEvent("SplitMetrics").detail("Begin", req.keys.begin).detail("End", req.keys.end).detail("Remaining", remaining.bytes).detail("Used", used.bytes).detail("MinSplitBytes", minSplitBytes); while (true) { if (remaining.bytes < 2 * minSplitBytes) break; KeyRef key = req.keys.end; bool hasUsed = used.bytes != 0 || used.bytesPerKSecond != 0 || used.iosPerKSecond != 0; key = getSplitKey(remaining.bytes, estimated.bytes, req.limits.bytes, used.bytes, req.limits.infinity, req.isLastShard, byteSample, 1, lastKey, key, hasUsed); if (used.bytes < minSplitBytes) key = std::max( key, byteSample.splitEstimate(KeyRangeRef(lastKey, req.keys.end), minSplitBytes - used.bytes)); key = getSplitKey(remaining.iosPerKSecond, estimated.iosPerKSecond, req.limits.iosPerKSecond, used.iosPerKSecond, req.limits.infinity, req.isLastShard, iopsSample, SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS, lastKey, key, hasUsed); key = getSplitKey(remaining.bytesPerKSecond, estimated.bytesPerKSecond, req.limits.bytesPerKSecond, used.bytesPerKSecond, req.limits.infinity, req.isLastShard, bandwidthSample, SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS, lastKey, key, hasUsed); ASSERT(key != lastKey || hasUsed); if (key == req.keys.end) break; reply.splits.push_back_deep(reply.splits.arena(), key); StorageMetrics diff = (getMetrics(KeyRangeRef(lastKey, key)) + used); remaining -= diff; estimated -= diff; used = StorageMetrics(); lastKey = key; } reply.used = getMetrics(KeyRangeRef(lastKey, req.keys.end)) + used; req.reply.send(reply); } catch (Error& e) { req.reply.sendError(e); } } void StorageServerMetrics::getStorageMetrics(GetStorageMetricsRequest req, StorageBytes sb, double bytesInputRate, int64_t versionLag, double lastUpdate) const { GetStorageMetricsReply rep; // SOMEDAY: make bytes dynamic with hard disk space rep.load = getMetrics(allKeys); if (sb.free < 1e9) { TraceEvent(SevWarn, "PhysicalDiskMetrics") .suppressFor(60.0) .detail("Free", sb.free) .detail("Total", sb.total) .detail("Available", sb.available) .detail("Load", rep.load.bytes); } rep.available.bytes = sb.available; rep.available.iosPerKSecond = 10e6; rep.available.bytesPerKSecond = 100e9; rep.available.bytesReadPerKSecond = 100e9; rep.capacity.bytes = sb.total; rep.capacity.iosPerKSecond = 10e6; rep.capacity.bytesPerKSecond = 100e9; rep.capacity.bytesReadPerKSecond = 100e9; rep.bytesInputRate = bytesInputRate; rep.versionLag = versionLag; rep.lastUpdate = lastUpdate; req.reply.send(rep); } // Given a read hot shard, this function will divide the shard into chunks and find those chunks whose // readBytes/sizeBytes exceeds the `readDensityRatio`. Please make sure to run unit tests // `StorageMetricsSampleTests.txt` after change made. std::vector StorageServerMetrics::getReadHotRanges( KeyRangeRef shard, double readDensityRatio, int64_t baseChunkSize, int64_t minShardReadBandwidthPerKSeconds) const { std::vector toReturn; double shardSize = (double)byteSample.getEstimate(shard); int64_t shardReadBandwidth = bytesReadSample.getEstimate(shard); if (shardReadBandwidth * SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS <= minShardReadBandwidthPerKSeconds) { return toReturn; } if (shardSize <= baseChunkSize) { // Shard is small, use it as is if (bytesReadSample.getEstimate(shard) > (readDensityRatio * shardSize)) { toReturn.emplace_back(shard, bytesReadSample.getEstimate(shard) / shardSize, bytesReadSample.getEstimate(shard) / SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL); } return toReturn; } KeyRef beginKey = shard.begin; auto endKey = byteSample.sample.index(byteSample.sample.sumTo(byteSample.sample.lower_bound(beginKey)) + baseChunkSize); while (endKey != byteSample.sample.end()) { if (*endKey > shard.end) { endKey = byteSample.sample.lower_bound(shard.end); if (*endKey == beginKey) { // No need to increment endKey since otherwise it would stuck here forever. break; } } if (*endKey == beginKey) { ++endKey; continue; } if (bytesReadSample.getEstimate(KeyRangeRef(beginKey, *endKey)) > (readDensityRatio * std::max(baseChunkSize, byteSample.getEstimate(KeyRangeRef(beginKey, *endKey))))) { auto range = KeyRangeRef(beginKey, *endKey); if (!toReturn.empty() && toReturn.back().keys.end == range.begin) { // in case two consecutive chunks both are over the ratio, merge them. range = KeyRangeRef(toReturn.back().keys.begin, *endKey); toReturn.pop_back(); } toReturn.emplace_back(range, (double)bytesReadSample.getEstimate(range) / std::max(baseChunkSize, byteSample.getEstimate(range)), bytesReadSample.getEstimate(range) / SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL); } beginKey = *endKey; endKey = byteSample.sample.index(byteSample.sample.sumTo(byteSample.sample.lower_bound(beginKey)) + baseChunkSize); } return toReturn; } void StorageServerMetrics::getReadHotRanges(ReadHotSubRangeRequest req) const { ReadHotSubRangeReply reply; auto _ranges = getReadHotRanges(req.keys, SERVER_KNOBS->SHARD_MAX_READ_DENSITY_RATIO, SERVER_KNOBS->READ_HOT_SUB_RANGE_CHUNK_SIZE, SERVER_KNOBS->SHARD_READ_HOT_BANDWIDTH_MIN_PER_KSECONDS); reply.readHotRanges = VectorRef(_ranges.data(), _ranges.size()); req.reply.send(reply); } void StorageServerMetrics::getSplitPoints(SplitRangeRequest req, Optional prefix) const { SplitRangeReply reply; KeyRangeRef range = req.keys; if (prefix.present()) { range = range.withPrefix(prefix.get(), req.arena); } std::vector points = getSplitPoints(range, req.chunkSize, prefix); reply.splitPoints.append_deep(reply.splitPoints.arena(), points.data(), points.size()); req.reply.send(reply); } std::vector StorageServerMetrics::getSplitPoints(KeyRangeRef range, int64_t chunkSize, Optional prefixToRemove) const { std::vector toReturn; KeyRef beginKey = range.begin; IndexedSet::const_iterator endKey = byteSample.sample.index(byteSample.sample.sumTo(byteSample.sample.lower_bound(beginKey)) + chunkSize); while (endKey != byteSample.sample.end()) { if (*endKey > range.end) { break; } if (*endKey == beginKey) { ++endKey; continue; } KeyRef splitPoint = *endKey; if (prefixToRemove.present()) { splitPoint = splitPoint.removePrefix(prefixToRemove.get()); } toReturn.push_back(splitPoint); beginKey = *endKey; endKey = byteSample.sample.index(byteSample.sample.sumTo(byteSample.sample.lower_bound(beginKey)) + chunkSize); } return toReturn; } void StorageServerMetrics::collapse(KeyRangeMap& map, KeyRef const& key) { auto range = map.rangeContaining(key); if (range == map.ranges().begin() || range == map.ranges().end()) return; int value = range->value(); auto prev = range; --prev; if (prev->value() != value) return; KeyRange keys = KeyRangeRef(prev->begin(), range->end()); map.insert(keys, value); } void StorageServerMetrics::add(KeyRangeMap& map, KeyRangeRef const& keys, int delta) { auto rs = map.modify(keys); for (auto r = rs.begin(); r != rs.end(); ++r) r->value() += delta; collapse(map, keys.begin); collapse(map, keys.end); } // Returns the sampled metric value (possibly 0, possibly increased by the sampling factor) int64_t TransientStorageMetricSample::addAndExpire(KeyRef key, int64_t metric, double expiration) { int64_t x = add(key, metric); if (x) queue.emplace_back(expiration, std::make_pair(*sample.find(key), -x)); return x; } // FIXME: both versions of erase are broken, because they do not remove items in the queue with will subtract a // metric from the value sometime in the future int64_t TransientStorageMetricSample::erase(KeyRef key) { auto it = sample.find(key); if (it == sample.end()) return 0; int64_t x = sample.getMetric(it); sample.erase(it); return x; } void TransientStorageMetricSample::erase(KeyRangeRef keys) { sample.erase(keys.begin, keys.end); } bool TransientStorageMetricSample::roll(KeyRef key, int64_t metric) const { return deterministicRandom()->random01() < (double)metric / metricUnitsPerSample; //< SOMEDAY: Better randomInt64? } void TransientStorageMetricSample::poll(KeyRangeMap>>& waitMap, StorageMetrics m) { double now = ::now(); while (queue.size() && queue.front().first <= now) { KeyRef key = queue.front().second.first; int64_t delta = queue.front().second.second; ASSERT(delta != 0); if (sample.addMetric(key, delta) == 0) sample.erase(key); StorageMetrics deltaM = m * delta; auto v = waitMap[key]; for (int i = 0; i < v.size(); i++) { CODE_PROBE(true, "TransientStorageMetricSample poll update"); v[i].send(deltaM); } queue.pop_front(); } } void TransientStorageMetricSample::poll() { double now = ::now(); while (queue.size() && queue.front().first <= now) { KeyRef key = queue.front().second.first; int64_t delta = queue.front().second.second; ASSERT(delta != 0); if (sample.addMetric(key, delta) == 0) sample.erase(key); queue.pop_front(); } } int64_t TransientStorageMetricSample::add(KeyRef key, int64_t metric) { if (!metric) return 0; int64_t mag = metric < 0 ? -metric : metric; if (mag < metricUnitsPerSample) { if (!roll(key, mag)) return 0; metric = metric < 0 ? -metricUnitsPerSample : metricUnitsPerSample; } if (sample.addMetric(key, metric) == 0) sample.erase(key); return metric; } TEST_CASE("/fdbserver/StorageMetricSample/simple") { StorageMetricSample s(1000); s.sample.insert("Apple"_sr, 1000); s.sample.insert("Banana"_sr, 2000); s.sample.insert("Cat"_sr, 1000); s.sample.insert("Cathode"_sr, 1000); s.sample.insert("Dog"_sr, 1000); ASSERT(s.getEstimate(KeyRangeRef("A"_sr, "D"_sr)) == 5000); ASSERT(s.getEstimate(KeyRangeRef("A"_sr, "E"_sr)) == 6000); ASSERT(s.getEstimate(KeyRangeRef("B"_sr, "C"_sr)) == 2000); // ASSERT(s.splitEstimate(KeyRangeRef("A"_sr, "D"_sr), 3500) == // "Cat"_sr); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/rangeSplitPoints/simple") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.byteSample.sample.insert("A"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 800 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); std::vector t = ssm.getSplitPoints(KeyRangeRef("A"_sr, "C"_sr), 2000 * sampleUnit, Optional()); ASSERT(t.size() == 1 && t[0] == "Bah"_sr); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/rangeSplitPoints/multipleReturnedPoints") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.byteSample.sample.insert("A"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 800 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); std::vector t = ssm.getSplitPoints(KeyRangeRef("A"_sr, "C"_sr), 600 * sampleUnit, Optional()); ASSERT(t.size() == 3 && t[0] == "Absolute"_sr && t[1] == "Apple"_sr && t[2] == "Bah"_sr); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/rangeSplitPoints/noneSplitable") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.byteSample.sample.insert("A"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 800 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); std::vector t = ssm.getSplitPoints(KeyRangeRef("A"_sr, "C"_sr), 10000 * sampleUnit, Optional()); ASSERT(t.size() == 0); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/rangeSplitPoints/chunkTooLarge") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.byteSample.sample.insert("A"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 10 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 10 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 30 * sampleUnit); std::vector t = ssm.getSplitPoints(KeyRangeRef("A"_sr, "C"_sr), 1000 * sampleUnit, Optional()); ASSERT(t.size() == 0); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/readHotDetect/simple") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.bytesReadSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Banana"_sr, 2000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cat"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cathode"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Dog"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("A"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); std::vector t = ssm.getReadHotRanges(KeyRangeRef("A"_sr, "C"_sr), 2.0, 200 * sampleUnit, 0); ASSERT(t.size() == 1 && (*t.begin()).keys.begin == "Bah"_sr && (*t.begin()).keys.end == "Bob"_sr); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/readHotDetect/moreThanOneRange") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.bytesReadSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Banana"_sr, 2000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cat"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cathode"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Dog"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Final"_sr, 2000 * sampleUnit); ssm.byteSample.sample.insert("A"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); ssm.byteSample.sample.insert("Dah"_sr, 300 * sampleUnit); std::vector t = ssm.getReadHotRanges(KeyRangeRef("A"_sr, "D"_sr), 2.0, 200 * sampleUnit, 0); ASSERT(t.size() == 2 && (*t.begin()).keys.begin == "Bah"_sr && (*t.begin()).keys.end == "Bob"_sr); ASSERT(t.at(1).keys.begin == "Cat"_sr && t.at(1).keys.end == "Dah"_sr); return Void(); } TEST_CASE("/fdbserver/StorageMetricSample/readHotDetect/consecutiveRanges") { int64_t sampleUnit = SERVER_KNOBS->BYTES_READ_UNITS_PER_SAMPLE; StorageServerMetrics ssm; ssm.bytesReadSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Banana"_sr, 2000 * sampleUnit); ssm.bytesReadSample.sample.insert("Bucket"_sr, 2000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cat"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Cathode"_sr, 1000 * sampleUnit); ssm.bytesReadSample.sample.insert("Dog"_sr, 5000 * sampleUnit); ssm.bytesReadSample.sample.insert("Final"_sr, 2000 * sampleUnit); ssm.byteSample.sample.insert("A"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Absolute"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Apple"_sr, 1000 * sampleUnit); ssm.byteSample.sample.insert("Bah"_sr, 20 * sampleUnit); ssm.byteSample.sample.insert("Banana"_sr, 80 * sampleUnit); ssm.byteSample.sample.insert("Bob"_sr, 200 * sampleUnit); ssm.byteSample.sample.insert("But"_sr, 100 * sampleUnit); ssm.byteSample.sample.insert("Cat"_sr, 300 * sampleUnit); ssm.byteSample.sample.insert("Dah"_sr, 300 * sampleUnit); std::vector t = ssm.getReadHotRanges(KeyRangeRef("A"_sr, "D"_sr), 2.0, 200 * sampleUnit, 0); ASSERT(t.size() == 2 && (*t.begin()).keys.begin == "Bah"_sr && (*t.begin()).keys.end == "But"_sr); ASSERT(t.at(1).keys.begin == "Cat"_sr && t.at(1).keys.end == "Dah"_sr); return Void(); }