/* * OldTLogServer.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2022 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flow/Hash3.h" #include "flow/UnitTest.h" #include "fdbclient/NativeAPI.actor.h" #include "fdbclient/Notified.h" #include "fdbclient/KeyRangeMap.h" #include "fdbclient/SystemData.h" #include "fdbserver/WorkerInterface.actor.h" #include "fdbserver/TLogInterface.h" #include "fdbserver/Knobs.h" #include "fdbserver/IKeyValueStore.h" #include "flow/ActorCollection.h" #include "fdbrpc/FailureMonitor.h" #include "fdbserver/IDiskQueue.h" #include "fdbrpc/sim_validation.h" #include "fdbrpc/Stats.h" #include "fdbserver/ServerDBInfo.h" #include "fdbserver/LogSystem.h" #include "fdbserver/WaitFailure.h" #include "flow/actorcompiler.h" // This must be the last #include. using std::max; using std::min; namespace oldTLog_4_6 { typedef int16_t OldTag; OldTag convertTag(Tag tag) { if (tag == invalidTag || tag.locality == tagLocalityTxs) return invalidTagOld; if (tag == txsTag) return txsTagOld; ASSERT(tag.id >= 0); return tag.id; } Tag convertOldTag(OldTag tag) { if (tag == invalidTagOld) return invalidTag; if (tag == txsTagOld) return txsTag; ASSERT(tag >= 0); return Tag(tagLocalityUpgraded, tag); } struct OldTagMessagesRef { OldTag tag; VectorRef messageOffsets; OldTagMessagesRef() {} OldTagMessagesRef(Arena& a, const OldTagMessagesRef& from) : tag(from.tag), messageOffsets(a, from.messageOffsets) {} size_t expectedSize() const { return messageOffsets.expectedSize(); } template void serialize(Ar& ar) { serializer(ar, tag, messageOffsets); } }; struct TLogQueueEntryRef { UID id; Version version; Version knownCommittedVersion; StringRef messages; VectorRef tags; TLogQueueEntryRef() : version(0), knownCommittedVersion(0) {} TLogQueueEntryRef(Arena& a, TLogQueueEntryRef const& from) : id(from.id), version(from.version), knownCommittedVersion(from.knownCommittedVersion), messages(a, from.messages), tags(a, from.tags) {} template void serialize(Ar& ar) { if (ar.protocolVersion().hasMultiGenerationTLog()) { serializer(ar, version, messages, tags, knownCommittedVersion, id); } else if (ar.isDeserializing) { serializer(ar, version, messages, tags); knownCommittedVersion = 0; id = UID(); } } size_t expectedSize() const { return messages.expectedSize() + tags.expectedSize(); } }; typedef Standalone TLogQueueEntry; struct TLogQueue final : public IClosable { public: TLogQueue(IDiskQueue* queue, UID dbgid) : queue(queue), dbgid(dbgid) {} // Each packet in the queue is // uint32_t payloadSize // uint8_t payload[payloadSize] (begins with uint64_t protocolVersion via IncludeVersion) // uint8_t validFlag // TLogQueue is a durable queue of TLogQueueEntry objects with an interface similar to IDiskQueue // TLogQueue pushes (but not commits) are atomic - after commit fails to return, a prefix of entire calls to push // are durable. This is // implemented on top of the weaker guarantee of IDiskQueue::commit (that a prefix of bytes is durable) using // validFlag and by padding any incomplete packet with zeros after recovery. // Before calling push, pop, or commit, the user must call readNext() until it throws // end_of_stream(). It may not be called again thereafter. Future readNext() { return readNext(this); } void push(TLogQueueEntryRef const& qe) { BinaryWriter wr(Unversioned()); // outer framing is not versioned wr << uint32_t(0); IncludeVersion(ProtocolVersion::withTLogQueueEntryRef()).write(wr); // payload is versioned wr << qe; wr << uint8_t(1); *(uint32_t*)wr.getData() = wr.getLength() - sizeof(uint32_t) - sizeof(uint8_t); auto loc = queue->push(wr.toValue()); //TraceEvent("TLogQueueVersionWritten", dbgid).detail("Size", wr.getLength() - sizeof(uint32_t) - sizeof(uint8_t)).detail("Loc", loc); version_location[qe.version] = loc; } void pop(Version upTo) { // Keep only the given and all subsequent version numbers // Find the first version >= upTo auto v = version_location.lower_bound(upTo); if (v == version_location.begin()) return; if (v == version_location.end()) { v = version_location.lastItem(); } else { v.decrementNonEnd(); } queue->pop(v->value); version_location.erase(version_location.begin(), v); // ... and then we erase that previous version and all prior versions } Future commit() { return queue->commit(); } // Implements IClosable Future getError() const override { return queue->getError(); } Future onClosed() const override { return queue->onClosed(); } void dispose() override { queue->dispose(); delete this; } void close() override { queue->close(); delete this; } private: IDiskQueue* queue; Map version_location; // For the version of each entry that was push()ed, the end location of the serialized bytes UID dbgid; ACTOR static Future readNext(TLogQueue* self) { state TLogQueueEntry result; state int zeroFillSize = 0; loop { Standalone h = wait(self->queue->readNext(sizeof(uint32_t))); if (h.size() != sizeof(uint32_t)) { if (h.size()) { TEST(true); // Zero fill within size field int payloadSize = 0; memcpy(&payloadSize, h.begin(), h.size()); zeroFillSize = sizeof(uint32_t) - h.size(); // zero fill the size itself zeroFillSize += payloadSize + 1; // and then the contents and valid flag } break; } state uint32_t payloadSize = *(uint32_t*)h.begin(); ASSERT(payloadSize < (100 << 20)); Standalone e = wait(self->queue->readNext(payloadSize + 1)); if (e.size() != payloadSize + 1) { TEST(true); // Zero fill within payload zeroFillSize = payloadSize + 1 - e.size(); break; } if (e[payloadSize]) { Arena a = e.arena(); ArenaReader ar(a, e.substr(0, payloadSize), IncludeVersion()); ar >> result; self->version_location[result.version] = self->queue->getNextReadLocation(); return result; } } if (zeroFillSize) { TEST(true); // Fixing a partial commit at the end of the tlog queue for (int i = 0; i < zeroFillSize; i++) self->queue->push(StringRef((const uint8_t*)"", 1)); } throw end_of_stream(); } }; ////// Persistence format (for self->persistentData) // Immutable keys static const KeyValueRef persistFormat(LiteralStringRef("Format"), LiteralStringRef("FoundationDB/LogServer/2/3")); static const KeyRangeRef persistFormatReadableRange(LiteralStringRef("FoundationDB/LogServer/2/3"), LiteralStringRef("FoundationDB/LogServer/2/4")); static const KeyRangeRef persistRecoveryCountKeys = KeyRangeRef(LiteralStringRef("DbRecoveryCount/"), LiteralStringRef("DbRecoveryCount0")); // Updated on updatePersistentData() static const KeyRangeRef persistCurrentVersionKeys = KeyRangeRef(LiteralStringRef("version/"), LiteralStringRef("version0")); static const KeyRange persistTagMessagesKeys = prefixRange(LiteralStringRef("TagMsg/")); static const KeyRange persistTagPoppedKeys = prefixRange(LiteralStringRef("TagPop/")); static Key persistTagMessagesKey(UID id, OldTag tag, Version version) { BinaryWriter wr(Unversioned()); wr.serializeBytes(persistTagMessagesKeys.begin); wr << id; wr << tag; wr << bigEndian64(version); return wr.toValue(); } static Key persistTagPoppedKey(UID id, OldTag tag) { BinaryWriter wr(Unversioned()); wr.serializeBytes(persistTagPoppedKeys.begin); wr << id; wr << tag; return wr.toValue(); } static Value persistTagPoppedValue(Version popped) { return BinaryWriter::toValue(popped, Unversioned()); } static OldTag decodeTagPoppedKey(KeyRef id, KeyRef key) { OldTag s; BinaryReader rd(key.removePrefix(persistTagPoppedKeys.begin).removePrefix(id), Unversioned()); rd >> s; return s; } static Version decodeTagPoppedValue(ValueRef value) { return BinaryReader::fromStringRef(value, Unversioned()); } static StringRef stripTagMessagesKey(StringRef key) { return key.substr(sizeof(UID) + sizeof(OldTag) + persistTagMessagesKeys.begin.size()); } static Version decodeTagMessagesKey(StringRef key) { return bigEndian64(BinaryReader::fromStringRef(stripTagMessagesKey(key), Unversioned())); } struct TLogData : NonCopyable { AsyncTrigger newLogData; Deque queueOrder; std::map> id_data; UID dbgid; UID workerID; IKeyValueStore* persistentData; IDiskQueue* rawPersistentQueue; TLogQueue* persistentQueue; int64_t diskQueueCommitBytes; AsyncVar largeDiskQueueCommitBytes; // becomes true when diskQueueCommitBytes is greater than MAX_QUEUE_COMMIT_BYTES Reference const> dbInfo; NotifiedVersion queueCommitEnd; Version queueCommitBegin; AsyncTrigger newVersion; int64_t instanceID; int64_t bytesInput; int64_t bytesDurable; int activePeekStreams = 0; Version prevVersion; struct PeekTrackerData { std::map> sequence_version; double lastUpdate; }; std::map peekTracker; WorkerCache tlogCache; Future updatePersist; // SOMEDAY: integrate the recovery and update storage so that only one of them is // committing to persistant data. PromiseStream> sharedActors; bool terminated; TLogData(UID dbgid, UID workerID, IKeyValueStore* persistentData, IDiskQueue* persistentQueue, Reference const> const& dbInfo) : dbgid(dbgid), workerID(workerID), persistentData(persistentData), rawPersistentQueue(persistentQueue), persistentQueue(new TLogQueue(persistentQueue, dbgid)), diskQueueCommitBytes(0), largeDiskQueueCommitBytes(false), dbInfo(dbInfo), queueCommitEnd(0), queueCommitBegin(0), instanceID(deterministicRandom()->randomUniqueID().first()), bytesInput(0), bytesDurable(0), prevVersion(0), updatePersist(Void()), terminated(false) {} }; struct LogData : NonCopyable, public ReferenceCounted { struct TagData { std::deque> version_messages; bool nothing_persistent; // true means tag is *known* to have no messages in persistentData. false means // nothing. bool popped_recently; // `popped` has changed since last updatePersistentData Version popped; // see popped version tracking contract below bool update_version_sizes; TagData(Version popped, bool nothing_persistent, bool popped_recently, OldTag tag) : nothing_persistent(nothing_persistent), popped_recently(popped_recently), popped(popped), update_version_sizes(tag != txsTagOld) {} TagData(TagData&& r) noexcept : version_messages(std::move(r.version_messages)), nothing_persistent(r.nothing_persistent), popped_recently(r.popped_recently), popped(r.popped), update_version_sizes(r.update_version_sizes) {} void operator=(TagData&& r) noexcept { version_messages = std::move(r.version_messages); nothing_persistent = r.nothing_persistent; popped_recently = r.popped_recently; popped = r.popped; update_version_sizes = r.update_version_sizes; } // Erase messages not needed to update *from* versions >= before (thus, messages with toversion <= before) ACTOR Future eraseMessagesBefore(TagData* self, Version before, int64_t* gBytesErased, Reference tlogData, TaskPriority taskID) { while (!self->version_messages.empty() && self->version_messages.front().first < before) { Version version = self->version_messages.front().first; std::pair& sizes = tlogData->version_sizes[version]; int64_t messagesErased = 0; while (!self->version_messages.empty() && self->version_messages.front().first == version) { auto const& m = self->version_messages.front(); ++messagesErased; if (self->update_version_sizes) { sizes.first -= m.second.expectedSize(); } self->version_messages.pop_front(); } int64_t bytesErased = (messagesErased * sizeof(std::pair) * SERVER_KNOBS->VERSION_MESSAGES_OVERHEAD_FACTOR_1024THS) >> 10; tlogData->bytesDurable += bytesErased; *gBytesErased += bytesErased; wait(yield(taskID)); } return Void(); } Future eraseMessagesBefore(Version before, int64_t* gBytesErased, Reference tlogData, TaskPriority taskID) { return eraseMessagesBefore(this, before, gBytesErased, tlogData, taskID); } }; /* Popped version tracking contract needed by log system to implement ILogCursor::popped(): - Log server tracks for each (possible) tag a popped_version Impl: TagData::popped (in memory) and persistTagPoppedKeys (in persistentData) - popped_version(tag) is <= the maximum version for which log server (or a predecessor) is ever asked to pop the tag Impl: Only increased by tLogPop() in response to either a pop request or recovery from a predecessor - popped_version(tag) is > the maximum version for which log server is unable to peek messages due to previous pops (on this server or a predecessor) Impl: Increased by tLogPop() atomically with erasing messages from memory; persisted by updatePersistentData() atomically with erasing messages from store; messages are not erased from queue where popped_version is not persisted - LockTLogReply returns all tags which either have messages, or which have nonzero popped_versions Impl: tag_data is present for all such tags - peek(tag, v) returns the popped_version for tag if that is greater than v Impl: Check tag_data->popped (after all waits) */ bool stopped, initialized; DBRecoveryCount recoveryCount; VersionMetricHandle persistentDataVersion, persistentDataDurableVersion; // The last version number in the portion of the log (written|durable) to // persistentData NotifiedVersion version, queueCommittedVersion; Version queueCommittingVersion; Version knownCommittedVersion; Deque>>> messageBlocks; Map tag_data; Map> version_sizes; CounterCollection cc; Counter bytesInput; Counter bytesDurable; UID logId; Version newPersistentDataVersion; Future removed; TLogInterface tli; PromiseStream> addActor; TLogData* tLogData; Promise recoverySuccessful; Future recovery; explicit LogData(TLogData* tLogData, TLogInterface interf) : stopped(false), initialized(false), recoveryCount(), queueCommittingVersion(0), knownCommittedVersion(0), cc("TLog", interf.id().toString()), bytesInput("BytesInput", cc), bytesDurable("BytesDurable", cc), logId(interf.id()), newPersistentDataVersion(invalidVersion), tli(interf), tLogData(tLogData), recovery(Void()) { startRole(Role::TRANSACTION_LOG, interf.id(), tLogData->workerID, { { "SharedTLog", tLogData->dbgid.shortString() } }, "Restored"); addActor.send(traceRole(Role::TRANSACTION_LOG, interf.id())); persistentDataVersion.init(LiteralStringRef("TLog.PersistentDataVersion"), cc.id); persistentDataDurableVersion.init(LiteralStringRef("TLog.PersistentDataDurableVersion"), cc.id); version.initMetric(LiteralStringRef("TLog.Version"), cc.id); queueCommittedVersion.initMetric(LiteralStringRef("TLog.QueueCommittedVersion"), cc.id); specialCounter(cc, "Version", [this]() { return this->version.get(); }); specialCounter(cc, "SharedBytesInput", [tLogData]() { return tLogData->bytesInput; }); specialCounter(cc, "SharedBytesDurable", [tLogData]() { return tLogData->bytesDurable; }); specialCounter( cc, "KvstoreBytesUsed", [tLogData]() { return tLogData->persistentData->getStorageBytes().used; }); specialCounter( cc, "KvstoreBytesFree", [tLogData]() { return tLogData->persistentData->getStorageBytes().free; }); specialCounter(cc, "KvstoreBytesAvailable", [tLogData]() { return tLogData->persistentData->getStorageBytes().available; }); specialCounter( cc, "KvstoreBytesTotal", [tLogData]() { return tLogData->persistentData->getStorageBytes().total; }); specialCounter( cc, "QueueDiskBytesUsed", [tLogData]() { return tLogData->rawPersistentQueue->getStorageBytes().used; }); specialCounter( cc, "QueueDiskBytesFree", [tLogData]() { return tLogData->rawPersistentQueue->getStorageBytes().free; }); specialCounter(cc, "QueueDiskBytesAvailable", [tLogData]() { return tLogData->rawPersistentQueue->getStorageBytes().available; }); specialCounter( cc, "QueueDiskBytesTotal", [tLogData]() { return tLogData->rawPersistentQueue->getStorageBytes().total; }); specialCounter(cc, "ActivePeekStreams", [tLogData]() { return tLogData->activePeekStreams; }); } ~LogData() { tLogData->bytesDurable += bytesInput.getValue() - bytesDurable.getValue(); TraceEvent("TLogBytesWhenRemoved", tli.id()) .detail("SharedBytesInput", tLogData->bytesInput) .detail("SharedBytesDurable", tLogData->bytesDurable) .detail("LocalBytesInput", bytesInput.getValue()) .detail("LocalBytesDurable", bytesDurable.getValue()); ASSERT_ABORT(tLogData->bytesDurable <= tLogData->bytesInput); endRole(Role::TRANSACTION_LOG, tli.id(), "Error", true); if (!tLogData->terminated) { Key logIdKey = BinaryWriter::toValue(logId, Unversioned()); tLogData->persistentData->clear(singleKeyRange(logIdKey.withPrefix(persistCurrentVersionKeys.begin))); tLogData->persistentData->clear(singleKeyRange(logIdKey.withPrefix(persistRecoveryCountKeys.begin))); Key msgKey = logIdKey.withPrefix(persistTagMessagesKeys.begin); tLogData->persistentData->clear(KeyRangeRef(msgKey, strinc(msgKey))); Key poppedKey = logIdKey.withPrefix(persistTagPoppedKeys.begin); tLogData->persistentData->clear(KeyRangeRef(poppedKey, strinc(poppedKey))); } } LogEpoch epoch() const { return recoveryCount; } }; ACTOR Future tLogLock(TLogData* self, ReplyPromise reply, Reference logData) { state Version stopVersion = logData->version.get(); TEST(true); // TLog stopped by recovering master TEST(logData->stopped); // LogData already stopped TEST(!logData->stopped); // LogData not yet stopped TraceEvent("TLogStop", logData->logId) .detail("Ver", stopVersion) .detail("IsStopped", logData->stopped) .detail("QueueCommitted", logData->queueCommittedVersion.get()); logData->stopped = true; if (logData->recoverySuccessful.canBeSet()) { logData->recoverySuccessful.send(false); } // Lock once the current version has been committed wait(logData->queueCommittedVersion.whenAtLeast(stopVersion)); ASSERT(stopVersion == logData->version.get()); TLogLockResult result; result.end = stopVersion; result.knownCommittedVersion = logData->knownCommittedVersion; TraceEvent("TLogStop2", self->dbgid) .detail("LogId", logData->logId) .detail("Ver", stopVersion) .detail("IsStopped", logData->stopped) .detail("QueueCommitted", logData->queueCommittedVersion.get()); reply.send(result); return Void(); } void updatePersistentPopped(TLogData* self, Reference logData, OldTag tag, LogData::TagData& data) { if (!data.popped_recently) return; self->persistentData->set( KeyValueRef(persistTagPoppedKey(logData->logId, tag), persistTagPoppedValue(data.popped))); data.popped_recently = false; if (data.nothing_persistent) return; self->persistentData->clear(KeyRangeRef(persistTagMessagesKey(logData->logId, tag, Version(0)), persistTagMessagesKey(logData->logId, tag, data.popped))); if (data.popped > logData->persistentDataVersion) data.nothing_persistent = true; } ACTOR Future updatePersistentData(TLogData* self, Reference logData, Version newPersistentDataVersion) { // PERSIST: Changes self->persistentDataVersion and writes and commits the relevant changes ASSERT(newPersistentDataVersion <= logData->version.get()); ASSERT(newPersistentDataVersion <= logData->queueCommittedVersion.get()); ASSERT(newPersistentDataVersion > logData->persistentDataVersion); ASSERT(logData->persistentDataVersion == logData->persistentDataDurableVersion); //TraceEvent("UpdatePersistentData", self->dbgid).detail("Seq", newPersistentDataSeq); state bool anyData = false; state Map::iterator tag; // For all existing tags for (tag = logData->tag_data.begin(); tag != logData->tag_data.end(); ++tag) { state Version currentVersion = 0; // Clear recently popped versions from persistentData if necessary updatePersistentPopped(self, logData, tag->key, tag->value); // Transfer unpopped messages with version numbers less than newPersistentDataVersion to persistentData state std::deque>::iterator msg = tag->value.version_messages.begin(); while (msg != tag->value.version_messages.end() && msg->first <= newPersistentDataVersion) { currentVersion = msg->first; anyData = true; tag->value.nothing_persistent = false; BinaryWriter wr(Unversioned()); for (; msg != tag->value.version_messages.end() && msg->first == currentVersion; ++msg) wr << msg->second.toStringRef(); self->persistentData->set( KeyValueRef(persistTagMessagesKey(logData->logId, tag->key, currentVersion), wr.toValue())); Future f = yield(TaskPriority::UpdateStorage); if (!f.isReady()) { wait(f); msg = std::upper_bound(tag->value.version_messages.begin(), tag->value.version_messages.end(), std::make_pair(currentVersion, LengthPrefixedStringRef()), [](const auto& l, const auto& r) { return l.first < r.first; }); } } wait(yield(TaskPriority::UpdateStorage)); } self->persistentData->set( KeyValueRef(BinaryWriter::toValue(logData->logId, Unversioned()).withPrefix(persistCurrentVersionKeys.begin), BinaryWriter::toValue(newPersistentDataVersion, Unversioned()))); logData->persistentDataVersion = newPersistentDataVersion; wait(self->persistentData->commit()); // SOMEDAY: This seems to be running pretty often, should we slow it down??? wait(delay(0, TaskPriority::UpdateStorage)); // Now that the changes we made to persistentData are durable, erase the data we moved from memory and the queue, // increase bytesDurable accordingly, and update persistentDataDurableVersion. TEST(anyData); // TLog moved data to persistentData logData->persistentDataDurableVersion = newPersistentDataVersion; for (tag = logData->tag_data.begin(); tag != logData->tag_data.end(); ++tag) { wait(tag->value.eraseMessagesBefore( newPersistentDataVersion + 1, &self->bytesDurable, logData, TaskPriority::UpdateStorage)); wait(yield(TaskPriority::UpdateStorage)); } logData->version_sizes.erase(logData->version_sizes.begin(), logData->version_sizes.lower_bound(logData->persistentDataDurableVersion)); wait(yield(TaskPriority::UpdateStorage)); while (!logData->messageBlocks.empty() && logData->messageBlocks.front().first <= newPersistentDataVersion) { int64_t bytesErased = int64_t(logData->messageBlocks.front().second.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; logData->bytesDurable += bytesErased; self->bytesDurable += bytesErased; logData->messageBlocks.pop_front(); wait(yield(TaskPriority::UpdateStorage)); } if (logData->bytesDurable.getValue() > logData->bytesInput.getValue() || self->bytesDurable > self->bytesInput) { TraceEvent(SevError, "BytesDurableTooLarge", logData->logId) .detail("SharedBytesInput", self->bytesInput) .detail("SharedBytesDurable", self->bytesDurable) .detail("LocalBytesInput", logData->bytesInput.getValue()) .detail("LocalBytesDurable", logData->bytesDurable.getValue()); } ASSERT(logData->bytesDurable.getValue() <= logData->bytesInput.getValue()); ASSERT(self->bytesDurable <= self->bytesInput); if (self->queueCommitEnd.get() > 0) self->persistentQueue->pop(newPersistentDataVersion + 1); // SOMEDAY: this can cause a slow task (~0.5ms), presumably from erasing too many // versions. Should we limit the number of versions cleared at a time? return Void(); } // This function (and updatePersistentData, which is called by this function) run at a low priority and can soak up all // CPU resources. For this reason, they employ aggressive use of yields to avoid causing slow tasks that could introduce // latencies for more important work (e.g. commits). ACTOR Future updateStorage(TLogData* self) { while (self->queueOrder.size() && !self->id_data.count(self->queueOrder.front())) { self->queueOrder.pop_front(); } if (!self->queueOrder.size()) { wait(delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage)); return Void(); } state Reference logData = self->id_data[self->queueOrder.front()]; state Version prevVersion = 0; state Version nextVersion = 0; state int totalSize = 0; if (logData->stopped) { if (self->bytesInput - self->bytesDurable >= SERVER_KNOBS->TLOG_SPILL_THRESHOLD) { while (logData->persistentDataDurableVersion != logData->version.get()) { std::vector>::iterator, std::deque>::iterator>> iters; for (auto tag = logData->tag_data.begin(); tag != logData->tag_data.end(); ++tag) iters.push_back( std::make_pair(tag->value.version_messages.begin(), tag->value.version_messages.end())); nextVersion = 0; while (totalSize < SERVER_KNOBS->UPDATE_STORAGE_BYTE_LIMIT || nextVersion <= logData->persistentDataVersion) { nextVersion = logData->version.get(); for (auto& it : iters) if (it.first != it.second) nextVersion = std::min(nextVersion, it.first->first + 1); if (nextVersion == logData->version.get()) break; for (auto& it : iters) { while (it.first != it.second && it.first->first < nextVersion) { totalSize += it.first->second.expectedSize(); ++it.first; } } } wait(logData->queueCommittedVersion.whenAtLeast(nextVersion)); wait(delay(0, TaskPriority::UpdateStorage)); //TraceEvent("TlogUpdatePersist", self->dbgid).detail("LogId", logData->logId).detail("NextVersion", nextVersion).detail("Version", logData->version.get()).detail("PersistentDataDurableVer", logData->persistentDataDurableVersion).detail("QueueCommitVer", logData->queueCommittedVersion.get()).detail("PersistDataVer", logData->persistentDataVersion); if (nextVersion > logData->persistentDataVersion) { self->updatePersist = updatePersistentData(self, logData, nextVersion); wait(self->updatePersist); } else { wait(delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage)); } if (logData->removed.isReady()) { break; } } if (logData->persistentDataDurableVersion == logData->version.get()) { self->queueOrder.pop_front(); } wait(delay(0.0, TaskPriority::UpdateStorage)); } else { wait(delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage)); } } else if (logData->initialized) { ASSERT(self->queueOrder.size() == 1); state Map>::iterator sizeItr = logData->version_sizes.begin(); while (totalSize < SERVER_KNOBS->UPDATE_STORAGE_BYTE_LIMIT && sizeItr != logData->version_sizes.end() && (logData->bytesInput.getValue() - logData->bytesDurable.getValue() - totalSize >= SERVER_KNOBS->TLOG_SPILL_THRESHOLD || sizeItr->value.first == 0)) { wait(yield(TaskPriority::UpdateStorage)); ++sizeItr; nextVersion = sizeItr == logData->version_sizes.end() ? logData->version.get() : sizeItr->key; state Map::iterator tag; for (tag = logData->tag_data.begin(); tag != logData->tag_data.end(); ++tag) { auto it = std::lower_bound(tag->value.version_messages.begin(), tag->value.version_messages.end(), std::make_pair(prevVersion, LengthPrefixedStringRef()), [](const auto& l, const auto& r) { return l.first < r.first; }); for (; it != tag->value.version_messages.end() && it->first < nextVersion; ++it) { totalSize += it->second.expectedSize(); } wait(yield(TaskPriority::UpdateStorage)); } prevVersion = nextVersion; } nextVersion = std::max(nextVersion, logData->persistentDataVersion); //TraceEvent("UpdateStorageVer", logData->logId).detail("NextVersion", nextVersion).detail("PersistentDataVersion", logData->persistentDataVersion).detail("TotalSize", totalSize); wait(logData->queueCommittedVersion.whenAtLeast(nextVersion)); wait(delay(0, TaskPriority::UpdateStorage)); if (nextVersion > logData->persistentDataVersion) { self->updatePersist = updatePersistentData(self, logData, nextVersion); wait(self->updatePersist); } if (totalSize < SERVER_KNOBS->UPDATE_STORAGE_BYTE_LIMIT) { wait(delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage)); } else { // recovery wants to commit to persistant data when updatePersistentData is not active, this delay ensures // that immediately after updatePersist returns another one has not been started yet. wait(delay(0.0, TaskPriority::UpdateStorage)); } } else { wait(delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage)); } return Void(); } ACTOR Future updateStorageLoop(TLogData* self) { wait(delay(0, TaskPriority::UpdateStorage)); loop { wait(updateStorage(self)); } } void commitMessages(Reference self, Version version, Arena arena, StringRef messages, VectorRef tags, int64_t& bytesInput) { // SOMEDAY: This method of copying messages is reasonably memory efficient, but it's still a lot of bytes copied. // Find a way to do the memory allocation right as we receive the messages in the network layer. int64_t addedBytes = 0; int64_t expectedBytes = 0; if (!messages.size()) { return; } StringRef messages1; // the first block of messages, if they aren't all stored contiguously. otherwise empty // Grab the last block in the blocks list so we can share its arena // We pop all of the elements of it to create a "fresh" vector that starts at the end of the previous vector Standalone> block; if (self->messageBlocks.empty()) { block = Standalone>(); block.reserve(block.arena(), std::max(SERVER_KNOBS->TLOG_MESSAGE_BLOCK_BYTES, messages.size())); } else { block = self->messageBlocks.back().second; } block.pop_front(block.size()); // If the current batch of messages doesn't fit entirely in the remainder of the last block in the list if (messages.size() + block.size() > block.capacity()) { // Find how many messages will fit LengthPrefixedStringRef r((uint32_t*)messages.begin()); uint8_t const* end = messages.begin() + block.capacity() - block.size(); while (r.toStringRef().end() <= end) { r = LengthPrefixedStringRef((uint32_t*)r.toStringRef().end()); } // Fill up the rest of this block int bytes = (uint8_t*)r.getLengthPtr() - messages.begin(); if (bytes) { TEST(true); // Splitting commit messages across multiple blocks messages1 = StringRef(block.end(), bytes); block.append(block.arena(), messages.begin(), bytes); self->messageBlocks.emplace_back(version, block); addedBytes += int64_t(block.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; messages = messages.substr(bytes); } // Make a new block block = Standalone>(); block.reserve(block.arena(), std::max(SERVER_KNOBS->TLOG_MESSAGE_BLOCK_BYTES, messages.size())); } // Copy messages into block ASSERT(messages.size() <= block.capacity() - block.size()); block.append(block.arena(), messages.begin(), messages.size()); self->messageBlocks.emplace_back(version, block); addedBytes += int64_t(block.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; messages = StringRef(block.end() - messages.size(), messages.size()); for (auto tag = tags.begin(); tag != tags.end(); ++tag) { int64_t tagMessages = 0; auto tsm = self->tag_data.find(tag->tag); if (tsm == self->tag_data.end()) { tsm = self->tag_data.insert( mapPair(std::move(OldTag(tag->tag)), LogData::TagData(Version(0), true, true, tag->tag)), false); } if (version >= tsm->value.popped) { for (int m = 0; m < tag->messageOffsets.size(); ++m) { int offs = tag->messageOffsets[m]; uint8_t const* p = offs < messages1.size() ? messages1.begin() + offs : messages.begin() + offs - messages1.size(); tsm->value.version_messages.emplace_back(version, LengthPrefixedStringRef((uint32_t*)p)); if (tsm->value.version_messages.back().second.expectedSize() > SERVER_KNOBS->MAX_MESSAGE_SIZE) { TraceEvent(SevWarnAlways, "LargeMessage") .detail("Size", tsm->value.version_messages.back().second.expectedSize()); } if (tag->tag != txsTagOld) expectedBytes += tsm->value.version_messages.back().second.expectedSize(); ++tagMessages; } } // The factor of VERSION_MESSAGES_OVERHEAD is intended to be an overestimate of the actual memory used to store // this data in a std::deque. In practice, this number is probably something like 528/512 ~= 1.03, but this // could vary based on the implementation. There will also be a fixed overhead per std::deque, but its size // should be trivial relative to the size of the TLog queue and can be thought of as increasing the capacity of // the queue slightly. addedBytes += (tagMessages * sizeof(std::pair) * SERVER_KNOBS->VERSION_MESSAGES_OVERHEAD_FACTOR_1024THS) >> 10; } self->version_sizes[version] = std::make_pair(expectedBytes, expectedBytes); self->bytesInput += addedBytes; bytesInput += addedBytes; //TraceEvent("TLogPushed", self->dbgid).detail("Bytes", addedBytes).detail("MessageBytes", messages.size()).detail("Tags", tags.size()).detail("ExpectedBytes", expectedBytes).detail("MCount", mCount).detail("TCount", tCount); } Version poppedVersion(Reference self, OldTag tag) { auto mapIt = self->tag_data.find(tag); if (mapIt == self->tag_data.end()) return Version(0); return mapIt->value.popped; } std::deque>& get_version_messages(Reference self, OldTag tag) { auto mapIt = self->tag_data.find(tag); if (mapIt == self->tag_data.end()) { static std::deque> empty; return empty; } return mapIt->value.version_messages; }; ACTOR Future tLogPop(TLogData* self, TLogPopRequest req, Reference logData) { OldTag oldTag = convertTag(req.tag); auto ti = logData->tag_data.find(oldTag); if (ti == logData->tag_data.end()) { ti = logData->tag_data.insert(mapPair(oldTag, LogData::TagData(req.to, true, true, oldTag))); } else if (req.to > ti->value.popped) { ti->value.popped = req.to; ti->value.popped_recently = true; // if (to.epoch == self->epoch()) if (req.to > logData->persistentDataDurableVersion) wait(ti->value.eraseMessagesBefore(req.to, &self->bytesDurable, logData, TaskPriority::TLogPop)); } req.reply.send(Void()); return Void(); } void peekMessagesFromMemory(Reference self, Tag tag, Version reqBegin, BinaryWriter& messages, Version& endVersion) { OldTag oldTag = convertTag(tag); ASSERT(!messages.getLength()); auto& deque = get_version_messages(self, oldTag); Version begin = std::max(reqBegin, self->persistentDataDurableVersion + 1); auto it = std::lower_bound(deque.begin(), deque.end(), std::make_pair(begin, LengthPrefixedStringRef()), [](const auto& l, const auto& r) { return l.first < r.first; }); Version currentVersion = -1; for (; it != deque.end(); ++it) { if (it->first != currentVersion) { if (messages.getLength() >= SERVER_KNOBS->DESIRED_TOTAL_BYTES) { endVersion = it->first; //TraceEvent("TLogPeekMessagesReached2", self->dbgid); break; } currentVersion = it->first; messages << int32_t(-1) << currentVersion; } BinaryReader rd(it->second.getLengthPtr(), it->second.expectedSize() + 4, Unversioned()); while (!rd.empty()) { int32_t messageLength; uint32_t subVersion; rd >> messageLength >> subVersion; messageLength += sizeof(uint16_t) + sizeof(Tag); messages << messageLength << subVersion << uint16_t(1) << tag; messageLength -= (sizeof(subVersion) + sizeof(uint16_t) + sizeof(Tag)); messages.serializeBytes(rd.readBytes(messageLength), messageLength); } } } // Common logics to peek TLog and create TLogPeekReply that serves both streaming peek or normal peek request ACTOR template Future tLogPeekMessages(PromiseType replyPromise, TLogData* self, Reference logData, Version reqBegin, Tag reqTag, bool reqReturnIfBlocked = false, bool reqOnlySpilled = false, Optional> reqSequence = Optional>()) { state BinaryWriter messages(Unversioned()); state BinaryWriter messages2(Unversioned()); state int sequence = -1; state UID peekId; state OldTag oldTag = convertTag(reqTag); if (reqSequence.present()) { try { peekId = reqSequence.get().first; sequence = reqSequence.get().second; if (sequence >= SERVER_KNOBS->PARALLEL_GET_MORE_REQUESTS && self->peekTracker.find(peekId) == self->peekTracker.end()) { throw operation_obsolete(); } if (sequence > 0) { auto& trackerData = self->peekTracker[peekId]; trackerData.lastUpdate = now(); Version ver = wait(trackerData.sequence_version[sequence].getFuture()); reqBegin = std::max(ver, reqBegin); wait(yield()); } } catch (Error& e) { if (e.code() == error_code_timed_out || e.code() == error_code_operation_obsolete) { replyPromise.sendError(e); return Void(); } else { throw; } } } if (reqReturnIfBlocked && logData->version.get() < reqBegin) { replyPromise.sendError(end_of_stream()); return Void(); } //TraceEvent("TLogPeekMessages0", self->dbgid).detail("ReqBeginEpoch", reqBegin.epoch).detail("ReqBeginSeq", reqBegin.sequence).detail("Epoch", self->epoch()).detail("PersistentDataSeq", self->persistentDataSequence).detail("Tag1", reqTag1).detail("Tag2", reqTag2); // Wait until we have something to return that the caller doesn't already have if (logData->version.get() < reqBegin) { wait(logData->version.whenAtLeast(reqBegin)); wait(delay(SERVER_KNOBS->TLOG_PEEK_DELAY, g_network->getCurrentTask())); } state Version endVersion = logData->version.get() + 1; Version poppedVer = poppedVersion(logData, oldTag); if (poppedVer > reqBegin) { TLogPeekReply rep; rep.maxKnownVersion = logData->version.get(); rep.minKnownCommittedVersion = 0; rep.popped = poppedVer; rep.end = poppedVer; rep.onlySpilled = false; if (reqSequence.present()) { auto& trackerData = self->peekTracker[peekId]; auto& sequenceData = trackerData.sequence_version[sequence + 1]; trackerData.lastUpdate = now(); if (trackerData.sequence_version.size() && sequence + 1 < trackerData.sequence_version.begin()->first) { replyPromise.sendError(operation_obsolete()); if (!sequenceData.isSet()) sequenceData.sendError(operation_obsolete()); return Void(); } if (sequenceData.isSet()) { if (sequenceData.getFuture().get() != rep.end) { TEST(true); // tlog peek second attempt ended at a different version replyPromise.sendError(operation_obsolete()); return Void(); } } else { sequenceData.send(rep.end); } rep.begin = reqBegin; } replyPromise.send(rep); return Void(); } // grab messages from disk //TraceEvent("TLogPeekMessages", self->dbgid).detail("ReqBeginEpoch", reqBegin.epoch).detail("ReqBeginSeq", reqBegin.sequence).detail("Epoch", self->epoch()).detail("PersistentDataSeq", self->persistentDataSequence).detail("Tag1", reqTag1).detail("Tag2", reqTag2); if (reqBegin <= logData->persistentDataDurableVersion) { // Just in case the durable version changes while we are waiting for the read, we grab this data from memory. We // may or may not actually send it depending on whether we get enough data from disk. SOMEDAY: Only do this if // an initial attempt to read from disk results in insufficient data and the required data is no longer in // memory SOMEDAY: Should we only send part of the messages we collected, to actually limit the size of the // result? peekMessagesFromMemory(logData, reqTag, reqBegin, messages2, endVersion); RangeResult kvs = wait(self->persistentData->readRange( KeyRangeRef(persistTagMessagesKey(logData->logId, oldTag, reqBegin), persistTagMessagesKey(logData->logId, oldTag, logData->persistentDataDurableVersion + 1)), SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES)); //TraceEvent("TLogPeekResults", self->dbgid).detail("ForAddress", replyPromise.getEndpoint().getPrimaryAddress()).detail("Tag1Results", s1).detail("Tag2Results", s2).detail("Tag1ResultsLim", kv1.size()).detail("Tag2ResultsLim", kv2.size()).detail("Tag1ResultsLast", kv1.size() ? kv1[0].key : "").detail("Tag2ResultsLast", kv2.size() ? kv2[0].key : "").detail("Limited", limited).detail("NextEpoch", next_pos.epoch).detail("NextSeq", next_pos.sequence).detail("NowEpoch", self->epoch()).detail("NowSeq", self->sequence.getNextSequence()); for (auto& kv : kvs) { auto ver = decodeTagMessagesKey(kv.key); messages << int32_t(-1) << ver; BinaryReader rd(kv.value, Unversioned()); while (!rd.empty()) { int32_t messageLength; uint32_t subVersion; rd >> messageLength >> subVersion; messageLength += sizeof(uint16_t) + sizeof(Tag); messages << messageLength << subVersion << uint16_t(1) << reqTag; messageLength -= (sizeof(subVersion) + sizeof(uint16_t) + sizeof(Tag)); messages.serializeBytes(rd.readBytes(messageLength), messageLength); } } if (kvs.expectedSize() >= SERVER_KNOBS->DESIRED_TOTAL_BYTES) endVersion = decodeTagMessagesKey(kvs.end()[-1].key) + 1; else messages.serializeBytes(messages2.toValue()); } else { peekMessagesFromMemory(logData, reqTag, reqBegin, messages, endVersion); //TraceEvent("TLogPeekResults", self->dbgid).detail("ForAddress", replyPromise.getEndpoint().getPrimaryAddress()).detail("MessageBytes", messages.getLength()).detail("NextEpoch", next_pos.epoch).detail("NextSeq", next_pos.sequence).detail("NowSeq", self->sequence.getNextSequence()); } TLogPeekReply reply; reply.maxKnownVersion = logData->version.get(); reply.minKnownCommittedVersion = 0; reply.onlySpilled = false; reply.messages = StringRef(reply.arena, messages.toValue()); reply.end = endVersion; //TraceEvent("TlogPeek", self->dbgid).detail("LogId", logData->logId).detail("EndVer", reply.end).detail("MsgBytes", reply.messages.expectedSize()).detail("ForAddress", replyPromise.getEndpoint().getPrimaryAddress()); if (reqSequence.present()) { auto& trackerData = self->peekTracker[peekId]; trackerData.lastUpdate = now(); auto& sequenceData = trackerData.sequence_version[sequence + 1]; if (sequenceData.isSet()) { if (sequenceData.getFuture().get() != reply.end) { TEST(true); // tlog peek second attempt ended at a different version (2) replyPromise.sendError(operation_obsolete()); return Void(); } } else { sequenceData.send(reply.end); } reply.begin = reqBegin; } replyPromise.send(reply); return Void(); } // This actor keep pushing TLogPeekStreamReply until it's removed from the cluster or should recover ACTOR Future tLogPeekStream(TLogData* self, TLogPeekStreamRequest req, Reference logData) { self->activePeekStreams++; state Version begin = req.begin; state bool onlySpilled = false; req.reply.setByteLimit(std::min(SERVER_KNOBS->MAXIMUM_PEEK_BYTES, req.limitBytes)); loop { state TLogPeekStreamReply reply; state Promise promise; state Future future(promise.getFuture()); try { wait(req.reply.onReady() && store(reply.rep, future) && tLogPeekMessages(promise, self, logData, begin, req.tag, req.returnIfBlocked, onlySpilled)); reply.rep.begin = begin; req.reply.send(reply); begin = reply.rep.end; onlySpilled = reply.rep.onlySpilled; if (reply.rep.end > logData->version.get()) { wait(delay(SERVER_KNOBS->TLOG_PEEK_DELAY, g_network->getCurrentTask())); } else { wait(delay(0, g_network->getCurrentTask())); } } catch (Error& e) { self->activePeekStreams--; TraceEvent(SevDebug, "TLogPeekStreamEnd", logData->logId) .errorUnsuppressed(e) .detail("PeerAddr", req.reply.getEndpoint().getPrimaryAddress()); if (e.code() == error_code_end_of_stream || e.code() == error_code_operation_obsolete) { req.reply.sendError(e); return Void(); } else { throw; } } } } ACTOR Future doQueueCommit(TLogData* self, Reference logData) { state Version ver = logData->version.get(); state Version commitNumber = self->queueCommitBegin + 1; self->queueCommitBegin = commitNumber; logData->queueCommittingVersion = ver; Future c = self->persistentQueue->commit(); self->diskQueueCommitBytes = 0; self->largeDiskQueueCommitBytes.set(false); wait(c); wait(self->queueCommitEnd.whenAtLeast(commitNumber - 1)); // Calling check_yield instead of yield to avoid a destruction ordering problem in simulation if (g_network->check_yield(g_network->getCurrentTask())) { wait(delay(0, g_network->getCurrentTask())); } ASSERT(ver > logData->queueCommittedVersion.get()); logData->queueCommittedVersion.set(ver); self->queueCommitEnd.set(commitNumber); //TraceEvent("TLogCommitDurable", self->dbgid).detail("Version", ver); return Void(); } ACTOR Future commitQueue(TLogData* self) { state Reference logData; loop { int foundCount = 0; for (auto it : self->id_data) { if (!it.second->stopped) { logData = it.second; foundCount++; } } ASSERT(foundCount < 2); if (foundCount == 0) { wait(self->newLogData.onTrigger()); continue; } TraceEvent("CommitQueueNewLog", self->dbgid) .detail("LogId", logData->logId) .detail("Version", logData->version.get()) .detail("Committing", logData->queueCommittingVersion) .detail("Commmitted", logData->queueCommittedVersion.get()); loop { if (logData->stopped && logData->version.get() == std::max(logData->queueCommittingVersion, logData->queueCommittedVersion.get())) { wait(logData->queueCommittedVersion.whenAtLeast(logData->version.get())); break; } choose { when(wait(logData->version.whenAtLeast( std::max(logData->queueCommittingVersion, logData->queueCommittedVersion.get()) + 1))) { while (self->queueCommitBegin != self->queueCommitEnd.get() && !self->largeDiskQueueCommitBytes.get()) { wait(self->queueCommitEnd.whenAtLeast(self->queueCommitBegin) || self->largeDiskQueueCommitBytes.onChange()); } self->sharedActors.send(doQueueCommit(self, logData)); } when(wait(self->newLogData.onTrigger())) {} } } } } ACTOR Future rejoinClusterController(TLogData* self, TLogInterface tli, DBRecoveryCount recoveryCount, Future registerWithCC) { state LifetimeToken lastMasterLifetime; loop { auto const& inf = self->dbInfo->get(); bool isDisplaced = !std::count(inf.priorCommittedLogServers.begin(), inf.priorCommittedLogServers.end(), tli.id()); isDisplaced = isDisplaced && inf.recoveryCount >= recoveryCount && inf.recoveryState != RecoveryState::UNINITIALIZED && !inf.logSystemConfig.hasTLog(tli.id()); if (isDisplaced) { TraceEvent("TLogDisplaced", tli.id()) .detail("Reason", "DBInfoDoesNotContain") .detail("RecoveryCount", recoveryCount) .detail("InfRecoveryCount", inf.recoveryCount) .detail("RecoveryState", (int)inf.recoveryState) .detail("LogSysConf", describe(inf.logSystemConfig.tLogs)) .detail("PriorLogs", describe(inf.priorCommittedLogServers)) .detail("OldLogGens", inf.logSystemConfig.oldTLogs.size()); if (BUGGIFY) wait(delay(SERVER_KNOBS->BUGGIFY_WORKER_REMOVED_MAX_LAG * deterministicRandom()->random01())); throw worker_removed(); } if (registerWithCC.isReady()) { if (!lastMasterLifetime.isEqual(self->dbInfo->get().masterLifetime)) { // The TLogRejoinRequest is needed to establish communications with a new master, which doesn't have our // TLogInterface TLogRejoinRequest req; req.myInterface = tli; TraceEvent("TLogRejoining", tli.id()) .detail("ClusterController", self->dbInfo->get().clusterInterface.id()) .detail("DbInfoMasterLifeTime", self->dbInfo->get().masterLifetime.toString()) .detail("LastMasterLifeTime", lastMasterLifetime.toString()); choose { when(TLogRejoinReply rep = wait( brokenPromiseToNever(self->dbInfo->get().clusterInterface.tlogRejoin.getReply(req)))) { if (rep.masterIsRecovered) lastMasterLifetime = self->dbInfo->get().masterLifetime; } when(wait(self->dbInfo->onChange())) {} } } else { wait(self->dbInfo->onChange()); } } else { wait(registerWithCC || self->dbInfo->onChange()); } } } ACTOR Future cleanupPeekTrackers(TLogData* self) { loop { double minTimeUntilExpiration = SERVER_KNOBS->PEEK_TRACKER_EXPIRATION_TIME; auto it = self->peekTracker.begin(); while (it != self->peekTracker.end()) { double timeUntilExpiration = it->second.lastUpdate + SERVER_KNOBS->PEEK_TRACKER_EXPIRATION_TIME - now(); if (timeUntilExpiration < 1.0e-6) { for (auto seq : it->second.sequence_version) { if (!seq.second.isSet()) { seq.second.sendError(timed_out()); } } it = self->peekTracker.erase(it); } else { minTimeUntilExpiration = std::min(minTimeUntilExpiration, timeUntilExpiration); ++it; } } wait(delay(minTimeUntilExpiration)); } } void getQueuingMetrics(TLogData* self, TLogQueuingMetricsRequest const& req) { TLogQueuingMetricsReply reply; reply.localTime = now(); reply.instanceID = self->instanceID; reply.bytesInput = self->bytesInput; reply.bytesDurable = self->bytesDurable; reply.storageBytes = self->persistentData->getStorageBytes(); reply.v = self->prevVersion; req.reply.send(reply); } ACTOR Future serveTLogInterface(TLogData* self, TLogInterface tli, Reference logData, PromiseStream warningCollectorInput) { loop choose { when(TLogPeekRequest req = waitNext(tli.peekMessages.getFuture())) { logData->addActor.send(tLogPeekMessages( req.reply, self, logData, req.begin, req.tag, req.returnIfBlocked, req.onlySpilled, req.sequence)); } when(TLogPeekStreamRequest req = waitNext(tli.peekStreamMessages.getFuture())) { TraceEvent(SevDebug, "TLogPeekStream", logData->logId) .detail("Token", tli.peekStreamMessages.getEndpoint().token); logData->addActor.send(tLogPeekStream(self, req, logData)); } when(TLogPopRequest req = waitNext(tli.popMessages.getFuture())) { logData->addActor.send(tLogPop(self, req, logData)); } when(TLogCommitRequest req = waitNext(tli.commit.getFuture())) { ASSERT(logData->stopped); req.reply.sendError(tlog_stopped()); } when(ReplyPromise reply = waitNext(tli.lock.getFuture())) { logData->addActor.send(tLogLock(self, reply, logData)); } when(TLogQueuingMetricsRequest req = waitNext(tli.getQueuingMetrics.getFuture())) { getQueuingMetrics(self, req); } when(TLogConfirmRunningRequest req = waitNext(tli.confirmRunning.getFuture())) { if (req.debugID.present()) { UID tlogDebugID = nondeterministicRandom()->randomUniqueID(); g_traceBatch.addAttach("TransactionAttachID", req.debugID.get().first(), tlogDebugID.first()); g_traceBatch.addEvent("TransactionDebug", tlogDebugID.first(), "TLogServer.TLogConfirmRunningRequest"); } ASSERT(logData->stopped); req.reply.sendError(tlog_stopped()); } } } void removeLog(TLogData* self, Reference logData) { TraceEvent("TLogRemoved", logData->logId) .detail("Input", logData->bytesInput.getValue()) .detail("Durable", logData->bytesDurable.getValue()); logData->stopped = true; if (logData->recoverySuccessful.canBeSet()) { logData->recoverySuccessful.send(false); } logData->addActor = PromiseStream>(); // there could be items still in the promise stream if one of the // actors threw an error immediately self->id_data.erase(logData->logId); if (self->id_data.size()) { return; } else { throw worker_removed(); } } ACTOR Future tLogCore(TLogData* self, Reference logData) { if (logData->removed.isReady()) { wait(delay(0)); // to avoid iterator invalidation in restorePersistentState when removed is already ready ASSERT(logData->removed.isError()); if (logData->removed.getError().code() != error_code_worker_removed) { throw logData->removed.getError(); } removeLog(self, logData); return Void(); } TraceEvent("NewLogData", self->dbgid).detail("LogId", logData->logId); logData->initialized = true; self->newLogData.trigger(); state PromiseStream warningCollectorInput; state Future warningCollector = timeoutWarningCollector(warningCollectorInput.getFuture(), 1.0, "TLogQueueCommitSlow", self->dbgid); state Future error = actorCollection(logData->addActor.getFuture()); logData->addActor.send(logData->recovery); logData->addActor.send(waitFailureServer(logData->tli.waitFailure.getFuture())); logData->addActor.send(logData->removed); // FIXME: update tlogMetrics to include new information, or possibly only have one copy for the shared instance logData->addActor.send(traceCounters("TLogMetrics", logData->logId, SERVER_KNOBS->STORAGE_LOGGING_DELAY, &logData->cc, logData->logId.toString() + "/TLogMetrics")); logData->addActor.send(serveTLogInterface(self, logData->tli, logData, warningCollectorInput)); try { wait(error); throw internal_error(); } catch (Error& e) { if (e.code() != error_code_worker_removed) throw; removeLog(self, logData); return Void(); } } ACTOR Future restorePersistentState(TLogData* self, LocalityData locality) { state double startt = now(); state Reference logData; state KeyRange tagKeys; // PERSIST: Read basic state from persistentData; replay persistentQueue but don't erase it TraceEvent("TLogRestorePersistentState", self->dbgid).log(); IKeyValueStore* storage = self->persistentData; state Future> fFormat = storage->readValue(persistFormat.key); state Future fVers = storage->readRange(persistCurrentVersionKeys); state Future fRecoverCounts = storage->readRange(persistRecoveryCountKeys); // FIXME: metadata in queue? wait(waitForAll(std::vector{ fFormat })); wait(waitForAll(std::vector{ fVers, fRecoverCounts })); if (fFormat.get().present() && !persistFormatReadableRange.contains(fFormat.get().get())) { TraceEvent(SevError, "UnsupportedDBFormat", self->dbgid) .detail("Format", fFormat.get().get()) .detail("Expected", persistFormat.value.toString()); throw worker_recovery_failed(); } if (!fFormat.get().present()) { RangeResult v = wait(self->persistentData->readRange(KeyRangeRef(StringRef(), LiteralStringRef("\xff")), 1)); if (!v.size()) { TEST(true); // The DB is completely empty, so it was never initialized. Delete it. throw worker_removed(); } else { // This should never happen TraceEvent(SevError, "NoDBFormatKey", self->dbgid).detail("FirstKey", v[0].key); ASSERT(false); throw worker_recovery_failed(); } } state std::vector>> removed; ASSERT(fVers.get().size() == fRecoverCounts.get().size()); state int idx = 0; state Promise registerWithCC; for (idx = 0; idx < fVers.get().size(); idx++) { state KeyRef rawId = fVers.get()[idx].key.removePrefix(persistCurrentVersionKeys.begin); UID id1 = BinaryReader::fromStringRef(rawId, Unversioned()); UID id2 = BinaryReader::fromStringRef( fRecoverCounts.get()[idx].key.removePrefix(persistRecoveryCountKeys.begin), Unversioned()); ASSERT(id1 == id2); TLogInterface recruited(id1, self->dbgid, locality); recruited.initEndpoints(); DUMPTOKEN(recruited.peekMessages); DUMPTOKEN(recruited.peekStreamMessages); DUMPTOKEN(recruited.popMessages); DUMPTOKEN(recruited.commit); DUMPTOKEN(recruited.lock); DUMPTOKEN(recruited.getQueuingMetrics); DUMPTOKEN(recruited.confirmRunning); DUMPTOKEN(recruited.waitFailure); DUMPTOKEN(recruited.recoveryFinished); DUMPTOKEN(recruited.disablePopRequest); DUMPTOKEN(recruited.enablePopRequest); DUMPTOKEN(recruited.snapRequest); logData = Reference(new LogData(self, recruited)); logData->stopped = true; self->id_data[id1] = logData; Version ver = BinaryReader::fromStringRef(fVers.get()[idx].value, Unversioned()); logData->persistentDataVersion = ver; logData->persistentDataDurableVersion = ver; logData->version.set(ver); logData->recoveryCount = BinaryReader::fromStringRef(fRecoverCounts.get()[idx].value, Unversioned()); logData->removed = rejoinClusterController(self, recruited, logData->recoveryCount, registerWithCC.getFuture()); removed.push_back(errorOr(logData->removed)); TraceEvent("TLogRestorePersistentStateVer", id1).detail("Ver", ver); // Restore popped keys. Pop operations that took place after the last (committed) updatePersistentDataVersion // might be lost, but that is fine because we will get the corresponding data back, too. tagKeys = prefixRange(rawId.withPrefix(persistTagPoppedKeys.begin)); loop { if (logData->removed.isReady()) break; RangeResult data = wait(self->persistentData->readRange(tagKeys, BUGGIFY ? 3 : 1 << 30, 1 << 20)); if (!data.size()) break; ((KeyRangeRef&)tagKeys) = KeyRangeRef(keyAfter(data.back().key, tagKeys.arena()), tagKeys.end); for (auto& kv : data) { OldTag tag = decodeTagPoppedKey(rawId, kv.key); Version popped = decodeTagPoppedValue(kv.value); TraceEvent("TLogRestorePop", logData->logId).detail("Tag", tag).detail("To", popped); ASSERT(logData->tag_data.find(tag) == logData->tag_data.end()); logData->tag_data.insert(mapPair(tag, LogData::TagData(popped, false, false, tag))); } } } state Future allRemoved = waitForAll(removed); state Version lastVer = 0; state UID lastId = UID(1, 1); // initialized so it will not compare equal to a default UID state double recoverMemoryLimit = SERVER_KNOBS->TARGET_BYTES_PER_TLOG + SERVER_KNOBS->SPRING_BYTES_TLOG; if (BUGGIFY) recoverMemoryLimit = std::max(SERVER_KNOBS->BUGGIFY_RECOVER_MEMORY_LIMIT, SERVER_KNOBS->TLOG_SPILL_THRESHOLD); try { loop { if (allRemoved.isReady()) { TEST(true); // all tlogs removed during queue recovery throw worker_removed(); } choose { when(TLogQueueEntry qe = wait(self->persistentQueue->readNext())) { if (!self->queueOrder.size() || self->queueOrder.back() != qe.id) self->queueOrder.push_back(qe.id); if (qe.id != lastId) { lastId = qe.id; auto it = self->id_data.find(qe.id); if (it != self->id_data.end()) { logData = it->second; } else { logData = Reference(); } } else { ASSERT(qe.version >= lastVer); lastVer = qe.version; } //TraceEvent("TLogRecoveredQE", self->dbgid).detail("LogId", qe.id).detail("Ver", qe.version).detail("MessageBytes", qe.messages.size()).detail("Tags", qe.tags.size()) // .detail("Tag0", qe.tags.size() ? qe.tags[0].tag : invalidTag).detail("Version", // logData->version.get()); if (logData) { logData->knownCommittedVersion = std::max(logData->knownCommittedVersion, qe.knownCommittedVersion); if (qe.version > logData->version.get()) { commitMessages(logData, qe.version, qe.arena(), qe.messages, qe.tags, self->bytesInput); logData->version.set(qe.version); logData->queueCommittedVersion.set(qe.version); while (self->bytesInput - self->bytesDurable >= recoverMemoryLimit) { TEST(true); // Flush excess data during TLog queue recovery TraceEvent("FlushLargeQueueDuringRecovery", self->dbgid) .detail("BytesInput", self->bytesInput) .detail("BytesDurable", self->bytesDurable) .detail("Version", logData->version.get()) .detail("PVer", logData->persistentDataVersion); choose { when(wait(updateStorage(self))) {} when(wait(allRemoved)) { throw worker_removed(); } } } } } } when(wait(allRemoved)) { throw worker_removed(); } } } } catch (Error& e) { if (e.code() != error_code_end_of_stream) throw; } TraceEvent("TLogRestorePersistentStateDone", self->dbgid).detail("Took", now() - startt); TEST(now() - startt >= 1.0); // TLog recovery took more than 1 second for (auto it : self->id_data) { if (it.second->queueCommittedVersion.get() == 0) { TraceEvent("TLogZeroVersion", self->dbgid).detail("LogId", it.first); it.second->queueCommittedVersion.set(it.second->version.get()); } self->sharedActors.send(tLogCore(self, it.second)); } if (registerWithCC.canBeSet()) registerWithCC.send(Void()); return Void(); } ACTOR Future tLog(IKeyValueStore* persistentData, IDiskQueue* persistentQueue, Reference const> db, LocalityData locality, UID tlogId, UID workerID) { state TLogData self(tlogId, workerID, persistentData, persistentQueue, db); state Future error = actorCollection(self.sharedActors.getFuture()); TraceEvent("SharedTlog", tlogId).detail("Version", "4.6"); try { wait(restorePersistentState(&self, locality)); self.sharedActors.send(cleanupPeekTrackers(&self)); self.sharedActors.send(commitQueue(&self)); self.sharedActors.send(updateStorageLoop(&self)); wait(error); throw internal_error(); } catch (Error& e) { TraceEvent("TLogError", tlogId).errorUnsuppressed(e); for (auto& it : self.id_data) { if (it.second->recoverySuccessful.canBeSet()) { it.second->recoverySuccessful.send(false); } } throw; } } } // namespace oldTLog_4_6