
No

Yes

No healthy alternatives

Has alternative Success

Exception

Broken Promise

Has alternatives?

Pick up an alternative

Backoff

Request Reply

Error

Never

Start

Load Balancing in FoundationDB
In FoundationDB, often multiple interfaces are available for the same type of requests. A load
balancer can be used to distribute the requests to those interfaces, while awaring the possible
failures.

Two load balancer are provided: basicLoadBalance and loadBalance , both defined in
LoadBalance.actor.h . The basicLoadBalance is a simple

basicLoadBalance
basicLoadBalance implements a simple load balancing algorithm. It applies to

Commit proxy interface
GetReadVersion proxy interface
ConfigFollower interface

The interface is assumed to be always fresh, i.e. the list of the servers is fixed.

af://n0
af://n3

No

Yes

Has alternative

No alternative

Success
Failure

At least one alternative
Start Has alternatives?

Choose initial candidates

Never

Pick up an alternative

Send request

Wait for available alternative

Response

All alternatives failed

Alternative pick up algorithm

In basicLoadBalance , a best alternative is picked up and used at the beginning. At this stage,
this alternative is randomly picked up among all alternatives. If the best alternative does not
work, it will iteratively try other interfaces, see here.

loadBalance
loadBalance provides a more sophisticated implementation of load balancing. In addition of
the basic load balancing, it also provides a variety of features, such like

Support for Test Storage Server (TSS)
Distance-based candidate election
Able to handle timeouts and exceptions with retries
etc.

Currently it is used for

Storage Server interface
BlobWorker interface

Note:

Response could be an exception, e.g. process_behind or request_maybe_delivered , and
will be delivered as Error to the caller.

af://n5
uat://picking-up-an-alternative-in-basic-load-balancing-algorithm
af://n18
https://github.com/apple/foundationdb/blob/main/documentation/sphinx/source/tss.rst

Choose initial candidates

Two initial candidates will be picked up before the requests start. They will be selected as the
first two alternatives for the load balancer. If both of them failed, other alternatives are used in a
round-robin way.

No QueueModel

If no QueueModel is provided, the initial candidates are picked up randomly. The first candidate,
or the best alternative, will always be one of local workers.

With QueueModel

QueueModel holds information about each candidate related to future version, latency and
penalty.

If the storage server is returning a future version error, it is marked as not available until
some certain time.
Penalty is reported by storage server in each response (see
storageserver.actor.cpp:StorageServer::getPenalty). It is determined by the write
queue length and the version lagging.

If QueueModel exists, the candidates will be picked base on the penalty. Workers with high
penalties will be avoided when picking up the first two candidates.

Pick up an alternative

As mentioned above, the alternatives are chosen in the round-robin way when the first two
candidates failed.

If all alternatives failed, a flag is set, so if the next request fails with process_behind , the caller
will receive the process_behind error.

Send requests to workers

Here it is assumed that there are at least one alternative available.

af://n104
af://n108
af://n112
af://n138
af://n134

Yes

Success

Timeout

No First request succeed

Second request succeedAdditional request failed

start

Is first request

Send first request

Response

Pick up next alternative

Send additional request

If the first request failed, it is reset and the next request will be considered as the first request.
Certain types of errors can also be returned as response, e.g. request_may_be_delivered or
process_behind , which may not trigger a load-balancer retry.

Wait for available alternative

When there is no alternatives available, the load balancer may wait until at least one interface is
up.

af://n150

Yes

No
Timeout

Success

Success

Failed
start Is first request in-flight

Wait for the first request
Response

Retry

Wait for alternatives
all_alternatives_failed

Note that "Wait for alternatives" will only timeout if the alternatives are not always fresh, i.e. this
only happens when accessing storage servers.

Requests

Original requests in loadBalancer are wrapped by LoadBalance.actor.h:RequestData . It
provides the following additional operations besides the original flow request:

TSS support if QueueModel is available
Translate some errors into maybe_delivered , process_behind or retries
Update the QueueModel information including latency, penalty, etc.

Appendix

Picking up an alternative in load balancing algorithm

The following script simulates the alternative picking up algorithm. The chosen alternatives will
be printed out one-by-one.

#! /usr/bin/env python3

import random

import time

af://n157
af://n99
af://n22

class Alternatives:

 def __init__(self, num_alternatives):

 self._size = num_alternatives

 def size(self):

 return self._size

 def get_best(self):

 return random.randint(0, self._size - 1)

Entry

NUM_ALTERNATIVES = 10

alts = Alternatives(NUM_ALTERNATIVES)

best_alt = alts.get_best()

next_alt = random.randint(0, alts.size() - 2)

if next_alt >= best_alt:

 next_alt += 1

start_alt = next_alt

start_distance = (best_alt + alts.size() - start_alt) % alts.size()

use_alt = None

print("best_alt = {}".format(best_alt))

print("start_alt = {}".format(start_alt))

print("start_distance = {}".format(start_distance))

while True:

 for alt_num in range(0, alts.size()):

 use_alt = next_alt

 if next_alt == start_alt:

 print(" Going back to the start_alt")

 use_alt = best_alt

 elif (next_alt + alts.size() - start_alt) % alts.size() <=

start_distance:

 print(" Entering start_distance")

 use_alt = (next_alt + alts.size() - 1) % alts.size()

 print("Attempting alt: {}".format(use_alt))

 # Next loop

 next_alt = (next_alt + 1) % alts.size()

 time.sleep(.2)

