/* * KVStoreTest.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2022 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "fmt/format.h" #include "fdbserver/workloads/workloads.actor.h" #include "fdbserver/IKeyValueStore.h" #include "flow/ActorCollection.h" #include "flow/actorcompiler.h" // This must be the last #include. extern IKeyValueStore* makeDummyKeyValueStore(); template class TestHistogram { public: TestHistogram(int minSamples = 100) : minSamples(minSamples) { reset(); } void reset() { N = 0; samplingRate = 1.0; sum = T(); sumSQ = T(); }; void addSample(const T& x) { if (!N) { minSample = maxSample = x; } else { if (x < minSample) minSample = x; if (maxSample < x) maxSample = x; } sum += x; sumSQ += x * x; N++; if (deterministicRandom()->random01() < samplingRate) { samples.push_back(x); if (samples.size() == minSamples * 2) { deterministicRandom()->randomShuffle(samples); samples.resize(minSamples); samplingRate /= 2; } } } // void addHistogram(const Histrogram& h2); T mean() const { return sum * (1.0 / N); } // exact const T& min() const { return minSample; } const T& max() const { return maxSample; } T stdDev() const { if (!N) return T(); return sqrt((sumSQ * N - sum * sum) * (1.0 / (N * (N - 1)))); } T percentileEstimate(double p) { ASSERT(p <= 1 && p >= 0); int size = samples.size(); if (!size) return T(); if (size == 1) return samples[0]; std::sort(samples.begin(), samples.end()); double fi = p * double(size - 1); int li = p * double(size - 1); if (li == size - 1) return samples.back(); double alpha = fi - li; return samples[li] * (1 - alpha) + samples[li + 1] * alpha; } T medianEstimate() { return percentileEstimate(0.5); } uint64_t samplesCount() const { return N; } private: int minSamples; double samplingRate; std::vector samples; T minSample; T maxSample; T sum; T sumSQ; uint64_t N; }; struct KVTest { IKeyValueStore* store; Version startVersion; Version lastSet; Version lastCommit; Version lastDurable; Map> allSets; int nodeCount, keyBytes; bool dispose; explicit KVTest(int nodeCount, bool dispose, int keyBytes) : store(nullptr), startVersion(Version(time(nullptr)) << 30), lastSet(startVersion), lastCommit(startVersion), lastDurable(startVersion), nodeCount(nodeCount), keyBytes(keyBytes), dispose(dispose) {} ~KVTest() { close(); } void close() { if (store) { TraceEvent("KVTestDestroy").log(); if (dispose) store->dispose(); else store->close(); store = 0; } } Version get(KeyRef key, Version version) { auto s = allSets.find(key); if (s == allSets.end()) return startVersion; auto& sets = s->value; auto it = sets.lastLessOrEqual(version); return it != sets.end() ? *it : startVersion; } void set(KeyValueRef kv) { store->set(kv); auto s = allSets.find(kv.key); if (s == allSets.end()) { allSets.insert(MapPair>(Key(kv.key), IndexedSet())); s = allSets.find(kv.key); } s->value.insert(lastSet, NoMetric()); } Key randomKey() { return makeKey(deterministicRandom()->randomInt(0, nodeCount)); } Key makeKey(Version value) { Key k; ((KeyRef&)k) = KeyRef(new (k.arena()) uint8_t[keyBytes], keyBytes); memcpy((uint8_t*)k.begin(), doubleToTestKey(value).begin(), 16); memset((uint8_t*)k.begin() + 16, '.', keyBytes - 16); return k; } }; ACTOR Future testKVRead(KVTest* test, Key key, TestHistogram* latency, PerfIntCounter* count) { // state Version s1 = test->lastCommit; state Version s2 = test->lastDurable; state double begin = timer(); Optional val = wait(test->store->readValue(key)); latency->addSample(timer() - begin); ++*count; Version v = val.present() ? BinaryReader::fromStringRef(val.get(), Unversioned()) : test->startVersion; if (v < test->startVersion) v = test->startVersion; // ignore older data from the database // ASSERT( s1 <= v || test->get(key, s1)==v ); // Plan A ASSERT(s2 <= v || test->get(key, s2) == v); // Causal consistency ASSERT(v <= test->lastCommit); // read committed // ASSERT( v <= test->lastSet ); // read uncommitted return Void(); } ACTOR Future testKVReadSaturation(KVTest* test, TestHistogram* latency, PerfIntCounter* count) { while (true) { state double begin = timer(); Optional val = wait(test->store->readValue(test->randomKey())); latency->addSample(timer() - begin); ++*count; wait(delay(0)); } } ACTOR Future testKVCommit(KVTest* test, TestHistogram* latency, PerfIntCounter* count) { state Version v = test->lastSet; test->lastCommit = v; state double begin = timer(); wait(test->store->commit()); ++*count; latency->addSample(timer() - begin); test->lastDurable = std::max(test->lastDurable, v); return Void(); } Future testKVStore(struct KVStoreTestWorkload* const&); struct KVStoreTestWorkload : TestWorkload { bool enabled, saturation; double testDuration, operationsPerSecond; double commitFraction, setFraction; int nodeCount, keyBytes, valueBytes; bool doSetup, doClear, doCount; std::string filename; PerfIntCounter reads, sets, commits; TestHistogram readLatency, commitLatency; double setupTook; std::string storeType; KVStoreTestWorkload(WorkloadContext const& wcx) : TestWorkload(wcx), reads("Reads"), sets("Sets"), commits("Commits"), setupTook(0) { enabled = !clientId; // only do this on the "first" client testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0); operationsPerSecond = getOption(options, LiteralStringRef("operationsPerSecond"), 100e3); commitFraction = getOption(options, LiteralStringRef("commitFraction"), .001); setFraction = getOption(options, LiteralStringRef("setFraction"), .1); nodeCount = getOption(options, LiteralStringRef("nodeCount"), 100000); keyBytes = getOption(options, LiteralStringRef("keyBytes"), 8); valueBytes = getOption(options, LiteralStringRef("valueBytes"), 8); doSetup = getOption(options, LiteralStringRef("setup"), false); doClear = getOption(options, LiteralStringRef("clear"), false); doCount = getOption(options, LiteralStringRef("count"), false); filename = getOption(options, LiteralStringRef("filename"), Value()).toString(); saturation = getOption(options, LiteralStringRef("saturation"), false); storeType = getOption(options, LiteralStringRef("storeType"), LiteralStringRef("ssd")).toString(); } std::string description() const override { return "KVStoreTest"; } Future setup(Database const& cx) override { return Void(); } Future start(Database const& cx) override { if (enabled) return testKVStore(this); return Void(); } Future check(Database const& cx) override { return true; } void metricsFromHistogram(std::vector& m, std::string name, TestHistogram& h) const { m.emplace_back("Min " + name, 1000.0 * h.min(), Averaged::True); m.emplace_back("Average " + name, 1000.0 * h.mean(), Averaged::True); m.emplace_back("Median " + name, 1000.0 * h.medianEstimate(), Averaged::True); m.emplace_back("95%% " + name, 1000.0 * h.percentileEstimate(0.95), Averaged::True); m.emplace_back("Max " + name, 1000.0 * h.max(), Averaged::True); } void getMetrics(std::vector& m) override { if (setupTook) m.emplace_back("SetupTook", setupTook, Averaged::False); m.push_back(reads.getMetric()); m.push_back(sets.getMetric()); m.push_back(commits.getMetric()); metricsFromHistogram(m, "Read Latency (ms)", readLatency); metricsFromHistogram(m, "Commit Latency (ms)", commitLatency); } }; WorkloadFactory KVStoreTestWorkloadFactory("KVStoreTest"); ACTOR Future testKVStoreMain(KVStoreTestWorkload* workload, KVTest* ptest) { state KVTest& test = *ptest; state ActorCollectionNoErrors ac; state std::deque> reads; state BinaryWriter wr(Unversioned()); state int64_t commitsStarted = 0; // test.store = makeDummyKeyValueStore(); state int extraBytes = workload->valueBytes - sizeof(test.lastSet); state int i; ASSERT(extraBytes >= 0); state char* extraValue = new char[extraBytes]; memset(extraValue, '.', extraBytes); if (workload->doCount) { state int64_t count = 0; state Key k; state double cst = timer(); while (true) { RangeResult kv = wait(test.store->readRange(KeyRangeRef(k, LiteralStringRef("\xff\xff\xff\xff")), 1000)); count += kv.size(); if (kv.size() < 1000) break; k = keyAfter(kv[kv.size() - 1].key); } double elapsed = timer() - cst; TraceEvent("KVStoreCount").detail("Count", count).detail("Took", elapsed); fmt::print("Counted: {0} in {1:01.f}s\n"); } if (workload->doSetup) { wr << Version(0); wr.serializeBytes(extraValue, extraBytes); printf("Building %d nodes: ", workload->nodeCount); state double setupBegin = timer(); state Future lastCommit = Void(); for (i = 0; i < workload->nodeCount; i++) { test.store->set(KeyValueRef(test.makeKey(i), wr.toValue())); if (!((i + 1) % 10000) || i + 1 == workload->nodeCount) { wait(lastCommit); lastCommit = test.store->commit(); printf("ETA: %f seconds\n", (timer() - setupBegin) / i * (workload->nodeCount - i)); } } wait(lastCommit); workload->setupTook = timer() - setupBegin; TraceEvent("KVStoreSetup").detail("Count", workload->nodeCount).detail("Took", workload->setupTook); } state double t = now(); state double stopAt = t + workload->testDuration; if (workload->saturation) { if (workload->commitFraction) { while (now() < stopAt) { for (int s = 0; s < 1 / workload->commitFraction; s++) { ++test.lastSet; BinaryWriter wr(Unversioned()); wr << test.lastSet; wr.serializeBytes(extraValue, extraBytes); test.set(KeyValueRef(test.randomKey(), wr.toValue())); ++workload->sets; } ++commitsStarted; wait(testKVCommit(&test, &workload->commitLatency, &workload->commits)); } } else { std::vector> actors; actors.reserve(100); for (int a = 0; a < 100; a++) actors.push_back(testKVReadSaturation(&test, &workload->readLatency, &workload->reads)); wait(timeout(waitForAll(actors), workload->testDuration, Void())); } } else { while (t < stopAt) { double end = now(); loop { t += 1.0 / workload->operationsPerSecond; double op = deterministicRandom()->random01(); if (op < workload->commitFraction) { // Commit if (workload->commits.getValue() == commitsStarted) { ++commitsStarted; ac.add(testKVCommit(&test, &workload->commitLatency, &workload->commits)); } } else if (op < workload->commitFraction + workload->setFraction) { // Set ++test.lastSet; BinaryWriter wr(Unversioned()); wr << test.lastSet; wr.serializeBytes(extraValue, extraBytes); test.set(KeyValueRef(test.randomKey(), wr.toValue())); ++workload->sets; } else { // Read ac.add(testKVRead(&test, test.randomKey(), &workload->readLatency, &workload->reads)); } if (t >= end) break; } wait(delayUntil(t)); } } if (workload->doClear) { state int chunk = 1000000; t = timer(); for (i = 0; i < workload->nodeCount; i += chunk) { test.store->clear(KeyRangeRef(test.makeKey(i), test.makeKey(i + chunk))); wait(test.store->commit()); } TraceEvent("KVStoreClear").detail("Took", timer() - t); } return Void(); } ACTOR Future testKVStore(KVStoreTestWorkload* workload) { state KVTest test(workload->nodeCount, !workload->filename.size(), workload->keyBytes); state Error err; // wait( delay(1) ); TraceEvent("GO").log(); UID id = deterministicRandom()->randomUniqueID(); std::string fn = workload->filename.size() ? workload->filename : id.toString(); if (workload->storeType == "ssd") test.store = keyValueStoreSQLite(fn, id, KeyValueStoreType::SSD_BTREE_V2); else if (workload->storeType == "ssd-1") test.store = keyValueStoreSQLite(fn, id, KeyValueStoreType::SSD_BTREE_V1); else if (workload->storeType == "ssd-2") test.store = keyValueStoreSQLite(fn, id, KeyValueStoreType::SSD_REDWOOD_V1); else if (workload->storeType == "ssd-redwood-1-experimental") test.store = keyValueStoreRedwoodV1(fn, id); else if (workload->storeType == "ssd-rocksdb-v1") test.store = keyValueStoreRocksDB(fn, id, KeyValueStoreType::SSD_ROCKSDB_V1); else if (workload->storeType == "ssd-sharded-rocksdb") test.store = keyValueStoreRocksDB( fn, id, KeyValueStoreType::SSD_SHARDED_ROCKSDB); // TODO: to replace the KVS in the future else if (workload->storeType == "memory") test.store = keyValueStoreMemory(fn, id, 500e6); else if (workload->storeType == "memory-radixtree-beta") test.store = keyValueStoreMemory(fn, id, 500e6, "fdr", KeyValueStoreType::MEMORY_RADIXTREE); else ASSERT(false); wait(test.store->init()); state Future main = testKVStoreMain(workload, &test); try { choose { when(wait(main)) {} when(wait(test.store->getError())) { ASSERT(false); } } } catch (Error& e) { err = e; } main.cancel(); Future c = test.store->onClosed(); test.close(); wait(c); if (err.code() != invalid_error_code) throw err; return Void(); }