/* * ClusterController.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2019 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "fdbrpc/FailureMonitor.h" #include "flow/ActorCollection.h" #include "flow/SystemMonitor.h" #include "fdbclient/NativeAPI.actor.h" #include "fdbserver/BackupInterface.h" #include "fdbserver/CoordinationInterface.h" #include "fdbserver/DataDistributorInterface.h" #include "fdbserver/Knobs.h" #include "fdbserver/ConfigBroadcaster.h" #include "fdbserver/MoveKeys.actor.h" #include "fdbserver/WorkerInterface.actor.h" #include "fdbserver/LeaderElection.h" #include "fdbserver/LogSystemConfig.h" #include "fdbserver/WaitFailure.h" #include "fdbserver/RatekeeperInterface.h" #include "fdbserver/BlobManagerInterface.h" #include "fdbserver/ServerDBInfo.h" #include "fdbserver/Status.h" #include "fdbserver/LatencyBandConfig.h" #include "fdbclient/DatabaseContext.h" #include "fdbclient/GlobalConfig.actor.h" #include "fdbserver/RecoveryState.h" #include "fdbclient/ReadYourWrites.h" #include "fdbrpc/Replication.h" #include "fdbrpc/ReplicationUtils.h" #include "fdbclient/KeyBackedTypes.h" #include "flow/Util.h" #include "flow/actorcompiler.h" // This must be the last #include. void failAfter(Future trigger, Endpoint e); // This is used to artificially amplify the used count for processes // occupied by non-singletons. This ultimately makes it less desirable // for singletons to use those processes as well. This constant should // be increased if we ever have more than 100 singletons (unlikely). static const int PID_USED_AMP_FOR_NON_SINGLETON = 100; struct WorkerInfo : NonCopyable { Future watcher; ReplyPromise reply; Generation gen; int reboots; ProcessClass initialClass; ClusterControllerPriorityInfo priorityInfo; WorkerDetails details; Future haltRatekeeper; Future haltDistributor; Future haltBlobManager; Standalone> issues; WorkerInfo() : gen(-1), reboots(0), priorityInfo(ProcessClass::UnsetFit, false, ClusterControllerPriorityInfo::FitnessUnknown) {} WorkerInfo(Future watcher, ReplyPromise reply, Generation gen, WorkerInterface interf, ProcessClass initialClass, ProcessClass processClass, ClusterControllerPriorityInfo priorityInfo, bool degraded, Standalone> issues) : watcher(watcher), reply(reply), gen(gen), reboots(0), initialClass(initialClass), priorityInfo(priorityInfo), details(interf, processClass, degraded), issues(issues) {} WorkerInfo(WorkerInfo&& r) noexcept : watcher(std::move(r.watcher)), reply(std::move(r.reply)), gen(r.gen), reboots(r.reboots), initialClass(r.initialClass), priorityInfo(r.priorityInfo), details(std::move(r.details)), haltRatekeeper(r.haltRatekeeper), haltDistributor(r.haltDistributor), haltBlobManager(r.haltBlobManager), issues(r.issues) {} void operator=(WorkerInfo&& r) noexcept { watcher = std::move(r.watcher); reply = std::move(r.reply); gen = r.gen; reboots = r.reboots; initialClass = r.initialClass; priorityInfo = r.priorityInfo; details = std::move(r.details); haltRatekeeper = r.haltRatekeeper; haltDistributor = r.haltDistributor; haltBlobManager = r.haltBlobManager; issues = r.issues; } }; struct WorkerFitnessInfo { WorkerDetails worker; ProcessClass::Fitness fitness; int used; WorkerFitnessInfo() : fitness(ProcessClass::NeverAssign), used(0) {} WorkerFitnessInfo(WorkerDetails worker, ProcessClass::Fitness fitness, int used) : worker(worker), fitness(fitness), used(used) {} }; class ClusterControllerData { public: struct DBInfo { Reference> clientInfo; Reference> serverInfo; std::map incompatibleConnections; AsyncTrigger forceMasterFailure; int64_t masterRegistrationCount; int64_t dbInfoCount; bool recoveryStalled; bool forceRecovery; DatabaseConfiguration config; // Asynchronously updated via master registration DatabaseConfiguration fullyRecoveredConfig; Database db; int unfinishedRecoveries; int logGenerations; bool cachePopulated; std::map> clientStatus; DBInfo() : clientInfo(new AsyncVar()), serverInfo(new AsyncVar()), masterRegistrationCount(0), dbInfoCount(0), recoveryStalled(false), forceRecovery(false), db(DatabaseContext::create(clientInfo, Future(), LocalityData(), EnableLocalityLoadBalance::True, TaskPriority::DefaultEndpoint, LockAware::True)), // SOMEDAY: Locality! unfinishedRecoveries(0), logGenerations(0), cachePopulated(false) {} void setDistributor(const DataDistributorInterface& interf) { auto newInfo = serverInfo->get(); newInfo.id = deterministicRandom()->randomUniqueID(); newInfo.infoGeneration = ++dbInfoCount; newInfo.distributor = interf; serverInfo->set(newInfo); } void setRatekeeper(const RatekeeperInterface& interf) { auto newInfo = serverInfo->get(); newInfo.id = deterministicRandom()->randomUniqueID(); newInfo.infoGeneration = ++dbInfoCount; newInfo.ratekeeper = interf; serverInfo->set(newInfo); } void setBlobManager(const BlobManagerInterface& interf) { auto newInfo = serverInfo->get(); newInfo.id = deterministicRandom()->randomUniqueID(); newInfo.infoGeneration = ++dbInfoCount; newInfo.blobManager = interf; serverInfo->set(newInfo); } void clearInterf(ProcessClass::ClassType t) { auto newInfo = serverInfo->get(); newInfo.id = deterministicRandom()->randomUniqueID(); newInfo.infoGeneration = ++dbInfoCount; if (t == ProcessClass::DataDistributorClass) { newInfo.distributor = Optional(); } else if (t == ProcessClass::RatekeeperClass) { newInfo.ratekeeper = Optional(); } else if (t == ProcessClass::BlobManagerClass) { newInfo.blobManager = Optional(); } serverInfo->set(newInfo); } }; struct UpdateWorkerList { Future init(Database const& db) { return update(this, db); } void set(Optional> processID, Optional data) { delta[processID] = data; anyDelta.set(true); } private: std::map>, Optional> delta; AsyncVar anyDelta; ACTOR static Future update(UpdateWorkerList* self, Database db) { // The Database we are using is based on worker registrations to this cluster controller, which come only // from master servers that we started, so it shouldn't be possible for multiple cluster controllers to // fight. state Transaction tr(db); loop { try { tr.clear(workerListKeys); wait(tr.commit()); break; } catch (Error& e) { wait(tr.onError(e)); } } loop { tr.reset(); // Wait for some changes while (!self->anyDelta.get()) wait(self->anyDelta.onChange()); self->anyDelta.set(false); state std::map>, Optional> delta; delta.swap(self->delta); TraceEvent("UpdateWorkerList").detail("DeltaCount", delta.size()); // Do a transaction to write the changes loop { try { for (auto w = delta.begin(); w != delta.end(); ++w) { if (w->second.present()) { tr.set(workerListKeyFor(w->first.get()), workerListValue(w->second.get())); } else tr.clear(workerListKeyFor(w->first.get())); } wait(tr.commit()); break; } catch (Error& e) { wait(tr.onError(e)); } } } } }; bool workerAvailable(WorkerInfo const& worker, bool checkStable) { return (now() - startTime < 2 * FLOW_KNOBS->SERVER_REQUEST_INTERVAL) || (IFailureMonitor::failureMonitor().getState(worker.details.interf.storage.getEndpoint()).isAvailable() && (!checkStable || worker.reboots < 2)); } bool isLongLivedStateless(Optional const& processId) { return (db.serverInfo->get().distributor.present() && db.serverInfo->get().distributor.get().locality.processId() == processId) || (db.serverInfo->get().ratekeeper.present() && db.serverInfo->get().ratekeeper.get().locality.processId() == processId) || (db.serverInfo->get().blobManager.present() && db.serverInfo->get().blobManager.get().locality.processId() == processId); } WorkerDetails getStorageWorker(RecruitStorageRequest const& req) { std::set>> excludedMachines(req.excludeMachines.begin(), req.excludeMachines.end()); std::set>> includeDCs(req.includeDCs.begin(), req.includeDCs.end()); std::set excludedAddresses(req.excludeAddresses.begin(), req.excludeAddresses.end()); for (auto& it : id_worker) if (workerAvailable(it.second, false) && !excludedMachines.count(it.second.details.interf.locality.zoneId()) && (includeDCs.size() == 0 || includeDCs.count(it.second.details.interf.locality.dcId())) && !addressExcluded(excludedAddresses, it.second.details.interf.address()) && (!it.second.details.interf.secondaryAddress().present() || !addressExcluded(excludedAddresses, it.second.details.interf.secondaryAddress().get())) && it.second.details.processClass.machineClassFitness(ProcessClass::Storage) <= ProcessClass::UnsetFit) { return it.second.details; } if (req.criticalRecruitment) { ProcessClass::Fitness bestFit = ProcessClass::NeverAssign; Optional bestInfo; for (auto& it : id_worker) { ProcessClass::Fitness fit = it.second.details.processClass.machineClassFitness(ProcessClass::Storage); if (workerAvailable(it.second, false) && !excludedMachines.count(it.second.details.interf.locality.zoneId()) && (includeDCs.size() == 0 || includeDCs.count(it.second.details.interf.locality.dcId())) && !addressExcluded(excludedAddresses, it.second.details.interf.address()) && fit < bestFit) { bestFit = fit; bestInfo = it.second.details; } } if (bestInfo.present()) { return bestInfo.get(); } } throw no_more_servers(); } // Returns a worker that can be used by a blob worker // Note: we restrict the set of possible workers to those in the same DC as the BM/CC WorkerDetails getBlobWorker(RecruitBlobWorkerRequest const& req) { std::set excludedAddresses(req.excludeAddresses.begin(), req.excludeAddresses.end()); for (auto& it : id_worker) { // the worker must be available, have the same dcID as CC, // not be one of the excluded addrs from req and have the approriate fitness if (workerAvailable(it.second, false) && clusterControllerDcId == it.second.details.interf.locality.dcId() && !addressExcluded(excludedAddresses, it.second.details.interf.address()) && (!it.second.details.interf.secondaryAddress().present() || !addressExcluded(excludedAddresses, it.second.details.interf.secondaryAddress().get())) && it.second.details.processClass.machineClassFitness(ProcessClass::BlobWorker) == ProcessClass::BestFit) { return it.second.details; } } throw no_more_servers(); } std::vector getWorkersForSeedServers( DatabaseConfiguration const& conf, Reference const& policy, Optional>> const& dcId = Optional>>()) { std::map> fitness_workers; std::vector results; Reference logServerSet = Reference(new LocalityMap()); LocalityMap* logServerMap = (LocalityMap*)logServerSet.getPtr(); bool bCompleted = false; for (auto& it : id_worker) { auto fitness = it.second.details.processClass.machineClassFitness(ProcessClass::Storage); if (workerAvailable(it.second, false) && !conf.isExcludedServer(it.second.details.interf.addresses()) && !isExcludedDegradedServer(it.second.details.interf.addresses()) && fitness != ProcessClass::NeverAssign && (!dcId.present() || it.second.details.interf.locality.dcId() == dcId.get())) { fitness_workers[fitness].push_back(it.second.details); } } for (auto& it : fitness_workers) { for (auto& worker : it.second) { logServerMap->add(worker.interf.locality, &worker); } std::vector bestSet; if (logServerSet->selectReplicas(policy, bestSet)) { results.reserve(bestSet.size()); for (auto& entry : bestSet) { auto object = logServerMap->getObject(entry); results.push_back(*object); } bCompleted = true; break; } } logServerSet->clear(); logServerSet.clear(); if (!bCompleted) { throw no_more_servers(); } return results; } // Adds workers to the result such that each field is used in the result set as evenly as possible, // with a secondary criteria of minimizing the reuse of zoneIds // only add workers which have a field which is already in the result set void addWorkersByLowestField(StringRef field, int desired, const std::vector& workers, std::set& resultSet) { typedef Optional> Field; typedef Optional> Zone; typedef std::tuple FieldCount; typedef std::pair ZoneCount; std::priority_queue, std::greater> fieldQueue; std::map, std::greater>> field_zoneQueue; std::map> field_count; std::map> zone_count; std::map> zone_workers; // Count the amount of fields and zones already in the result set for (auto& worker : resultSet) { auto thisField = worker.interf.locality.get(field); auto thisZone = worker.interf.locality.zoneId(); auto thisDc = worker.interf.locality.dcId(); auto& fitness = field_count[thisField]; fitness.first++; fitness.second = thisDc == clusterControllerDcId; auto& zc = zone_count[thisZone]; zc.first++; zc.second = thisField; } for (auto& worker : workers) { auto thisField = worker.interf.locality.get(field); auto thisZone = worker.interf.locality.zoneId(); if (field_count.count(thisField)) { zone_workers[thisZone].push_back(worker); zone_count[thisZone].second = thisField; } } // try to avoid fields in the cluster controller datacenter if everything else is equal for (auto& it : field_count) { fieldQueue.push(std::make_tuple(it.second.first, it.second.second, it.first)); } for (auto& it : zone_count) { field_zoneQueue[it.second.second].push(std::make_pair(it.second.first, it.first)); } // start with the least used field, and try to find a worker with that field while (fieldQueue.size()) { auto lowestField = fieldQueue.top(); auto& lowestZoneQueue = field_zoneQueue[std::get<2>(lowestField)]; bool added = false; // start with the least used zoneId, and try and find a worker with that zone while (lowestZoneQueue.size() && !added) { auto lowestZone = lowestZoneQueue.top(); auto& zoneWorkers = zone_workers[lowestZone.second]; while (zoneWorkers.size() && !added) { if (!resultSet.count(zoneWorkers.back())) { resultSet.insert(zoneWorkers.back()); if (resultSet.size() == desired) { return; } added = true; } zoneWorkers.pop_back(); } lowestZoneQueue.pop(); if (added && zoneWorkers.size()) { ++lowestZone.first; lowestZoneQueue.push(lowestZone); } } fieldQueue.pop(); if (added) { ++std::get<0>(lowestField); fieldQueue.push(lowestField); } } } // Adds workers to the result which minimize the reuse of zoneIds void addWorkersByLowestZone(int desired, const std::vector& workers, std::set& resultSet) { typedef Optional> Zone; typedef std::pair ZoneCount; std::map zone_count; std::map> zone_workers; std::priority_queue, std::greater> zoneQueue; for (const auto& worker : workers) { auto thisZone = worker.interf.locality.zoneId(); zone_count[thisZone] = 0; zone_workers[thisZone].push_back(worker); } for (auto& worker : resultSet) { auto thisZone = worker.interf.locality.zoneId(); zone_count[thisZone]++; } for (auto& it : zone_count) { zoneQueue.push(std::make_pair(it.second, it.first)); } while (zoneQueue.size()) { auto lowestZone = zoneQueue.top(); auto& zoneWorkers = zone_workers[lowestZone.second]; bool added = false; while (zoneWorkers.size() && !added) { if (!resultSet.count(zoneWorkers.back())) { resultSet.insert(zoneWorkers.back()); if (resultSet.size() == desired) { return; } added = true; } zoneWorkers.pop_back(); } zoneQueue.pop(); if (added && zoneWorkers.size()) { ++lowestZone.first; zoneQueue.push(lowestZone); } } } // Log the reason why the worker is considered as unavailable. void logWorkerUnavailable(const Severity severity, const UID& id, const std::string& method, const std::string& reason, const WorkerDetails& details, const ProcessClass::Fitness& fitness, const std::set>& dcIds) { // Construct the list of DCs where the TLog recruitment is happening. This is mainly for logging purpose. std::string dcList; for (const auto& dc : dcIds) { if (!dcList.empty()) { dcList += ','; } dcList += printable(dc); } // Logging every possible options is a lot for every recruitment; logging all of the options with GoodFit or // BestFit may work because there should only be like 30 tlog class processes. Plus, the recruitment happens // only during initial database creation and recovery. So these trace events should be sparse. if (fitness == ProcessClass::GoodFit || fitness == ProcessClass::BestFit || fitness == ProcessClass::NeverAssign) { TraceEvent(severity, "GetTLogTeamWorkerUnavailable", id) .detail("TLogRecruitMethod", method) .detail("Reason", reason) .detail("WorkerID", details.interf.id()) .detail("WorkerDC", details.interf.locality.dcId()) .detail("Address", details.interf.addresses().toString()) .detail("Fitness", fitness) .detail("RecruitmentDcIds", dcList); } } // A TLog recruitment method specialized for three_data_hall and three_datacenter configurations // It attempts to evenly recruit processes from across data_halls or datacenters std::vector getWorkersForTlogsComplex(DatabaseConfiguration const& conf, int32_t desired, std::map>, int>& id_used, StringRef field, int minFields, int minPerField, bool allowDegraded, bool checkStable, const std::set>& dcIds, const std::vector& exclusionWorkerIds) { std::map, std::vector> fitness_workers; // Go through all the workers to list all the workers that can be recruited. for (const auto& [worker_process_id, worker_info] : id_worker) { const auto& worker_details = worker_info.details; auto fitness = worker_details.processClass.machineClassFitness(ProcessClass::TLog); if (std::find(exclusionWorkerIds.begin(), exclusionWorkerIds.end(), worker_details.interf.id()) != exclusionWorkerIds.end()) { logWorkerUnavailable(SevInfo, id, "complex", "Worker is excluded", worker_details, fitness, dcIds); continue; } if (!workerAvailable(worker_info, checkStable)) { logWorkerUnavailable(SevInfo, id, "complex", "Worker is not available", worker_details, fitness, dcIds); continue; } if (conf.isExcludedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "complex", "Worker server is excluded from the cluster", worker_details, fitness, dcIds); continue; } if (isExcludedDegradedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "complex", "Worker server is excluded from the cluster due to degradation", worker_details, fitness, dcIds); continue; } if (fitness == ProcessClass::NeverAssign) { logWorkerUnavailable( SevDebug, id, "complex", "Worker's fitness is NeverAssign", worker_details, fitness, dcIds); continue; } if (!dcIds.empty() && dcIds.count(worker_details.interf.locality.dcId()) == 0) { logWorkerUnavailable( SevDebug, id, "complex", "Worker is not in the target DC", worker_details, fitness, dcIds); continue; } if (!allowDegraded && worker_details.degraded) { logWorkerUnavailable( SevInfo, id, "complex", "Worker is degraded and not allowed", worker_details, fitness, dcIds); continue; } fitness_workers[std::make_tuple( fitness, id_used[worker_process_id], isLongLivedStateless(worker_process_id))] .push_back(worker_details); } auto requiredFitness = ProcessClass::NeverAssign; int requiredUsed = 1e6; typedef Optional> Field; typedef Optional> Zone; std::map, std::vector>> field_zones; std::set fieldsWithMin; std::map field_count; std::map> field_fitness; // Determine the best required workers by finding the workers with enough unique zoneIds per field for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { deterministicRandom()->randomShuffle(workerIter->second); auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } for (auto& worker : workerIter->second) { auto thisField = worker.interf.locality.get(field); auto& zones = field_zones[thisField]; if (zones.first.insert(worker.interf.locality.zoneId()).second) { zones.second.push_back(worker); if (zones.first.size() == minPerField) { fieldsWithMin.insert(thisField); } } field_count[thisField]++; field_fitness.insert( { thisField, std::make_tuple(fitness, used, worker.interf.locality.dcId() == clusterControllerDcId) }); } if (fieldsWithMin.size() >= minFields) { requiredFitness = fitness; requiredUsed = used; } } if (fieldsWithMin.size() < minFields) { throw no_more_servers(); } std::set chosenFields; // If we cannot use all of the fields, use the fields which allow the best workers to be chosen if (fieldsWithMin.size() * minPerField > desired) { std::vector> orderedFields; for (auto& it : fieldsWithMin) { auto& fitness = field_fitness[it]; orderedFields.emplace_back( std::get<0>(fitness), std::get<1>(fitness), std::get<2>(fitness), field_count[it], it); } std::sort(orderedFields.begin(), orderedFields.end()); int totalFields = desired / minPerField; int maxCount = 0; for (int i = 0; i < orderedFields.size() && chosenFields.size() < totalFields; i++) { if (chosenFields.size() == totalFields - 1 && maxCount + std::get<3>(orderedFields[i]) < desired) { for (int j = i + 1; j < orderedFields.size(); j++) { if (maxCount + std::get<3>(orderedFields[j]) >= desired) { chosenFields.insert(std::get<4>(orderedFields[j])); break; } } } if (chosenFields.size() < totalFields) { maxCount += std::get<3>(orderedFields[i]); chosenFields.insert(std::get<4>(orderedFields[i])); } } } else { chosenFields = fieldsWithMin; } // Create a result set with fulfills the minField and minPerField requirements before adding more workers std::set resultSet; for (auto& it : chosenFields) { auto& w = field_zones[it].second; for (int i = 0; i < minPerField; i++) { resultSet.insert(w[i]); } } // Continue adding workers to the result set until we reach the desired number of workers for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end() && resultSet.size() < desired; ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } if (workerIter->second.size() + resultSet.size() <= desired) { for (auto& worker : workerIter->second) { if (chosenFields.count(worker.interf.locality.get(field))) { resultSet.insert(worker); } } } else { addWorkersByLowestField(field, desired, workerIter->second, resultSet); } } for (auto& result : resultSet) { id_used[result.interf.locality.processId()]++; } return std::vector(resultSet.begin(), resultSet.end()); } // Attempt to recruit TLogs without degraded processes and see if it improves the configuration std::vector getWorkersForTlogsComplex(DatabaseConfiguration const& conf, int32_t desired, std::map>, int>& id_used, StringRef field, int minFields, int minPerField, bool checkStable, const std::set>& dcIds, const std::vector& exclusionWorkerIds) { desired = std::max(desired, minFields * minPerField); std::map>, int> withDegradedUsed = id_used; auto withDegraded = getWorkersForTlogsComplex(conf, desired, withDegradedUsed, field, minFields, minPerField, true, checkStable, dcIds, exclusionWorkerIds); RoleFitness withDegradedFitness(withDegraded, ProcessClass::TLog, withDegradedUsed); ASSERT(withDegraded.size() <= desired); bool usedDegraded = false; for (auto& it : withDegraded) { if (it.degraded) { usedDegraded = true; break; } } if (!usedDegraded) { id_used = withDegradedUsed; return withDegraded; } try { std::map>, int> withoutDegradedUsed = id_used; auto withoutDegraded = getWorkersForTlogsComplex(conf, desired, withoutDegradedUsed, field, minFields, minPerField, false, checkStable, dcIds, exclusionWorkerIds); RoleFitness withoutDegradedFitness(withoutDegraded, ProcessClass::TLog, withoutDegradedUsed); ASSERT(withoutDegraded.size() <= desired); if (withDegradedFitness < withoutDegradedFitness) { id_used = withDegradedUsed; return withDegraded; } id_used = withoutDegradedUsed; return withoutDegraded; } catch (Error& e) { if (e.code() != error_code_no_more_servers) { throw; } id_used = withDegradedUsed; return withDegraded; } } // A TLog recruitment method specialized for single, double, and triple configurations // It recruits processes from with unique zoneIds until it reaches the desired amount std::vector getWorkersForTlogsSimple(DatabaseConfiguration const& conf, int32_t required, int32_t desired, std::map>, int>& id_used, bool checkStable, const std::set>& dcIds, const std::vector& exclusionWorkerIds) { std::map, std::vector> fitness_workers; // Go through all the workers to list all the workers that can be recruited. for (const auto& [worker_process_id, worker_info] : id_worker) { const auto& worker_details = worker_info.details; auto fitness = worker_details.processClass.machineClassFitness(ProcessClass::TLog); if (std::find(exclusionWorkerIds.begin(), exclusionWorkerIds.end(), worker_details.interf.id()) != exclusionWorkerIds.end()) { logWorkerUnavailable(SevInfo, id, "simple", "Worker is excluded", worker_details, fitness, dcIds); continue; } if (!workerAvailable(worker_info, checkStable)) { logWorkerUnavailable(SevInfo, id, "simple", "Worker is not available", worker_details, fitness, dcIds); continue; } if (conf.isExcludedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "simple", "Worker server is excluded from the cluster", worker_details, fitness, dcIds); continue; } if (isExcludedDegradedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "simple", "Worker server is excluded from the cluster due to degradation", worker_details, fitness, dcIds); continue; } if (fitness == ProcessClass::NeverAssign) { logWorkerUnavailable( SevDebug, id, "complex", "Worker's fitness is NeverAssign", worker_details, fitness, dcIds); continue; } if (!dcIds.empty() && dcIds.count(worker_details.interf.locality.dcId()) == 0) { logWorkerUnavailable( SevDebug, id, "simple", "Worker is not in the target DC", worker_details, fitness, dcIds); continue; } // This worker is a candidate for TLog recruitment. bool inCCDC = worker_details.interf.locality.dcId() == clusterControllerDcId; // Prefer recruiting a TransactionClass non-degraded process over a LogClass degraded process if (worker_details.degraded) { fitness = std::max(fitness, ProcessClass::GoodFit); } fitness_workers[std::make_tuple(fitness, id_used[worker_process_id], worker_details.degraded, isLongLivedStateless(worker_process_id), inCCDC)] .push_back(worker_details); } auto requiredFitness = ProcessClass::BestFit; int requiredUsed = 0; std::set>> zones; std::set resultSet; // Determine the best required workers by finding the workers with enough unique zoneIds for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); deterministicRandom()->randomShuffle(workerIter->second); for (auto& worker : workerIter->second) { if (!zones.count(worker.interf.locality.zoneId())) { zones.insert(worker.interf.locality.zoneId()); resultSet.insert(worker); if (resultSet.size() == required) { break; } } } if (resultSet.size() == required) { requiredFitness = fitness; requiredUsed = used; break; } } // Continue adding workers to the result set until we reach the desired number of workers for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end() && resultSet.size() < desired; ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } if (workerIter->second.size() + resultSet.size() <= desired) { for (auto& worker : workerIter->second) { resultSet.insert(worker); } } else { addWorkersByLowestZone(desired, workerIter->second, resultSet); } } ASSERT(resultSet.size() <= desired); for (auto& result : resultSet) { id_used[result.interf.locality.processId()]++; } return std::vector(resultSet.begin(), resultSet.end()); } // A backup method for TLog recruitment that is used for custom policies, but does a worse job // selecting the best workers. // conf: the database configuration. // required: the required number of TLog workers to select. // desired: the desired number of TLog workers to select. // policy: the TLog replication policy the selection needs to satisfy. // id_used: keep track of process IDs of selected workers. // checkStable: when true, only select from workers that are considered as stable worker (not rebooted more than // twice recently). // dcIds: the target data centers the workers are in. The selected workers must all be from these // data centers: // exclusionWorkerIds: the workers to be excluded from the selection. std::vector getWorkersForTlogsBackup( DatabaseConfiguration const& conf, int32_t required, int32_t desired, Reference const& policy, std::map>, int>& id_used, bool checkStable = false, const std::set>& dcIds = std::set>(), const std::vector& exclusionWorkerIds = {}) { std::map, std::vector> fitness_workers; std::vector results; Reference logServerSet = Reference(new LocalityMap()); LocalityMap* logServerMap = (LocalityMap*)logServerSet.getPtr(); bool bCompleted = false; desired = std::max(required, desired); // Go through all the workers to list all the workers that can be recruited. for (const auto& [worker_process_id, worker_info] : id_worker) { const auto& worker_details = worker_info.details; auto fitness = worker_details.processClass.machineClassFitness(ProcessClass::TLog); if (std::find(exclusionWorkerIds.begin(), exclusionWorkerIds.end(), worker_details.interf.id()) != exclusionWorkerIds.end()) { logWorkerUnavailable(SevInfo, id, "deprecated", "Worker is excluded", worker_details, fitness, dcIds); continue; } if (!workerAvailable(worker_info, checkStable)) { logWorkerUnavailable( SevInfo, id, "deprecated", "Worker is not available", worker_details, fitness, dcIds); continue; } if (conf.isExcludedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "deprecated", "Worker server is excluded from the cluster", worker_details, fitness, dcIds); continue; } if (isExcludedDegradedServer(worker_details.interf.addresses())) { logWorkerUnavailable(SevInfo, id, "deprecated", "Worker server is excluded from the cluster due to degradation", worker_details, fitness, dcIds); continue; } if (fitness == ProcessClass::NeverAssign) { logWorkerUnavailable( SevDebug, id, "complex", "Worker's fitness is NeverAssign", worker_details, fitness, dcIds); continue; } if (!dcIds.empty() && dcIds.count(worker_details.interf.locality.dcId()) == 0) { logWorkerUnavailable( SevDebug, id, "deprecated", "Worker is not in the target DC", worker_details, fitness, dcIds); continue; } // This worker is a candidate for TLog recruitment. bool inCCDC = worker_details.interf.locality.dcId() == clusterControllerDcId; // Prefer recruiting a TransactionClass non-degraded process over a LogClass degraded process if (worker_details.degraded) { fitness = std::max(fitness, ProcessClass::GoodFit); } fitness_workers[std::make_tuple(fitness, id_used[worker_process_id], worker_details.degraded, inCCDC)] .push_back(worker_details); } auto requiredFitness = ProcessClass::BestFit; int requiredUsed = 0; bool requiredDegraded = false; bool requiredInCCDC = false; // Determine the minimum fitness and used necessary to fulfill the policy for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || used > requiredUsed) { if (logServerSet->size() >= required && logServerSet->validate(policy)) { bCompleted = true; break; } requiredFitness = fitness; requiredUsed = used; } if (std::get<2>(workerIter->first)) { requiredDegraded = true; } if (std::get<3>(workerIter->first)) { requiredInCCDC = true; } for (auto& worker : workerIter->second) { logServerMap->add(worker.interf.locality, &worker); } } if (!bCompleted && !(logServerSet->size() >= required && logServerSet->validate(policy))) { std::vector tLocalities; for (auto& object : logServerMap->getObjects()) { tLocalities.push_back(object->interf.locality); } logServerSet->clear(); logServerSet.clear(); throw no_more_servers(); } // If we have less than the desired amount, return all of the processes we have if (logServerSet->size() <= desired) { for (auto& object : logServerMap->getObjects()) { results.push_back(*object); } for (auto& result : results) { id_used[result.interf.locality.processId()]++; } return results; } // If we have added any degraded processes, try and remove them to see if we can still // have the desired amount of processes if (requiredDegraded) { logServerMap->clear(); for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } auto addingDegraded = std::get<2>(workerIter->first); if (addingDegraded) { continue; } for (auto& worker : workerIter->second) { logServerMap->add(worker.interf.locality, &worker); } } if (logServerSet->size() >= desired && logServerSet->validate(policy)) { requiredDegraded = false; } } // If we have added any processes in the CC DC, try and remove them to see if we can still // have the desired amount of processes if (requiredInCCDC) { logServerMap->clear(); for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } auto addingDegraded = std::get<2>(workerIter->first); auto inCCDC = std::get<3>(workerIter->first); if (inCCDC || (!requiredDegraded && addingDegraded)) { continue; } for (auto& worker : workerIter->second) { logServerMap->add(worker.interf.locality, &worker); } } if (logServerSet->size() >= desired && logServerSet->validate(policy)) { requiredInCCDC = false; } } logServerMap->clear(); for (auto workerIter = fitness_workers.begin(); workerIter != fitness_workers.end(); ++workerIter) { auto fitness = std::get<0>(workerIter->first); auto used = std::get<1>(workerIter->first); if (fitness > requiredFitness || (fitness == requiredFitness && used > requiredUsed)) { break; } auto addingDegraded = std::get<2>(workerIter->first); auto inCCDC = std::get<3>(workerIter->first); if ((!requiredInCCDC && inCCDC) || (!requiredDegraded && addingDegraded)) { continue; } for (auto& worker : workerIter->second) { logServerMap->add(worker.interf.locality, &worker); } } if (logServerSet->size() == desired) { for (auto& object : logServerMap->getObjects()) { results.push_back(*object); } for (auto& result : results) { id_used[result.interf.locality.processId()]++; } return results; } std::vector bestSet; std::vector tLocalities; // We have more than the desired number of processes, so use the policy engine to // pick a diverse subset of them bCompleted = findBestPolicySet(bestSet, logServerSet, policy, desired, SERVER_KNOBS->POLICY_RATING_TESTS, SERVER_KNOBS->POLICY_GENERATIONS); ASSERT(bCompleted); results.reserve(results.size() + bestSet.size()); for (auto& entry : bestSet) { auto object = logServerMap->getObject(entry); ASSERT(object); results.push_back(*object); tLocalities.push_back(object->interf.locality); } for (auto& result : results) { id_used[result.interf.locality.processId()]++; } TraceEvent("GetTLogTeamDone") .detail("Policy", policy->info()) .detail("Results", results.size()) .detail("Processes", logServerSet->size()) .detail("Workers", id_worker.size()) .detail("Required", required) .detail("Desired", desired) .detail("Fitness", requiredFitness) .detail("Used", requiredUsed) .detail("AddingDegraded", requiredDegraded) .detail("InCCDC", requiredInCCDC) .detail("BestCount", bestSet.size()) .detail("BestZones", ::describeZones(tLocalities)) .detail("BestDataHalls", ::describeDataHalls(tLocalities)); return results; } // Selects the best method for TLog recruitment based on the specified policy std::vector getWorkersForTlogs(DatabaseConfiguration const& conf, int32_t required, int32_t desired, Reference const& policy, std::map>, int>& id_used, bool checkStable = false, const std::set>& dcIds = std::set>(), const std::vector& exclusionWorkerIds = {}) { desired = std::max(required, desired); bool useSimple = false; if (policy->name() == "Across") { PolicyAcross* pa1 = (PolicyAcross*)policy.getPtr(); Reference embedded = pa1->embeddedPolicy(); if (embedded->name() == "Across") { PolicyAcross* pa2 = (PolicyAcross*)embedded.getPtr(); if (pa2->attributeKey() == "zoneid" && pa2->embeddedPolicyName() == "One") { std::map>, int> testUsed = id_used; auto workers = getWorkersForTlogsComplex(conf, desired, id_used, pa1->attributeKey(), pa1->getCount(), pa2->getCount(), checkStable, dcIds, exclusionWorkerIds); if (g_network->isSimulated()) { auto testWorkers = getWorkersForTlogsBackup( conf, required, desired, policy, testUsed, checkStable, dcIds, exclusionWorkerIds); RoleFitness testFitness(testWorkers, ProcessClass::TLog, testUsed); RoleFitness fitness(workers, ProcessClass::TLog, id_used); std::map>, int> field_count; std::set>> zones; for (auto& worker : testWorkers) { if (!zones.count(worker.interf.locality.zoneId())) { field_count[worker.interf.locality.get(pa1->attributeKey())]++; zones.insert(worker.interf.locality.zoneId()); } } // backup recruitment is not required to use degraded processes that have better fitness // so we cannot compare degraded between the two methods testFitness.degraded = fitness.degraded; int minField = 100; for (auto& f : field_count) { minField = std::min(minField, f.second); } if (fitness > testFitness && minField > 1) { for (auto& w : testWorkers) { TraceEvent("TestTLogs").detail("Interf", w.interf.address()); } for (auto& w : workers) { TraceEvent("RealTLogs").detail("Interf", w.interf.address()); } TraceEvent("FitnessCompare") .detail("TestF", testFitness.toString()) .detail("RealF", fitness.toString()); ASSERT(false); } } return workers; } } else if (pa1->attributeKey() == "zoneid" && embedded->name() == "One") { ASSERT(pa1->getCount() == required); useSimple = true; } } else if (policy->name() == "One") { useSimple = true; } if (useSimple) { std::map>, int> testUsed = id_used; auto workers = getWorkersForTlogsSimple(conf, required, desired, id_used, checkStable, dcIds, exclusionWorkerIds); if (g_network->isSimulated()) { auto testWorkers = getWorkersForTlogsBackup( conf, required, desired, policy, testUsed, checkStable, dcIds, exclusionWorkerIds); RoleFitness testFitness(testWorkers, ProcessClass::TLog, testUsed); RoleFitness fitness(workers, ProcessClass::TLog, id_used); // backup recruitment is not required to use degraded processes that have better fitness // so we cannot compare degraded between the two methods testFitness.degraded = fitness.degraded; if (fitness > testFitness) { for (auto& w : testWorkers) { TraceEvent("TestTLogs").detail("Interf", w.interf.address()); } for (auto& w : workers) { TraceEvent("RealTLogs").detail("Interf", w.interf.address()); } TraceEvent("FitnessCompare") .detail("TestF", testFitness.toString()) .detail("RealF", fitness.toString()); ASSERT(false); } } return workers; } TraceEvent(g_network->isSimulated() ? SevError : SevWarnAlways, "PolicyEngineNotOptimized"); return getWorkersForTlogsBackup( conf, required, desired, policy, id_used, checkStable, dcIds, exclusionWorkerIds); } // FIXME: This logic will fallback unnecessarily when usable dcs > 1 because it does not check all combinations of // potential satellite locations std::vector getWorkersForSatelliteLogs(const DatabaseConfiguration& conf, const RegionInfo& region, const RegionInfo& remoteRegion, std::map>, int>& id_used, bool& satelliteFallback, bool checkStable = false) { int startDC = 0; loop { if (startDC > 0 && startDC >= region.satellites.size() + 1 - (satelliteFallback ? region.satelliteTLogUsableDcsFallback : region.satelliteTLogUsableDcs)) { if (satelliteFallback || region.satelliteTLogUsableDcsFallback == 0) { throw no_more_servers(); } else { if (!goodRecruitmentTime.isReady()) { throw operation_failed(); } satelliteFallback = true; startDC = 0; } } try { bool remoteDCUsedAsSatellite = false; std::set> satelliteDCs; int32_t desiredSatelliteTLogs = 0; for (int s = startDC; s < std::min(startDC + (satelliteFallback ? region.satelliteTLogUsableDcsFallback : region.satelliteTLogUsableDcs), region.satellites.size()); s++) { satelliteDCs.insert(region.satellites[s].dcId); if (region.satellites[s].satelliteDesiredTLogCount == -1 || desiredSatelliteTLogs == -1) { desiredSatelliteTLogs = -1; } else { desiredSatelliteTLogs += region.satellites[s].satelliteDesiredTLogCount; } if (region.satellites[s].dcId == remoteRegion.dcId) { remoteDCUsedAsSatellite = true; } } std::vector exclusionWorkerIds; // FIXME: If remote DC is used as satellite then this logic only ensures that required number of remote // TLogs can be recruited. It does not balance the number of desired TLogs across the satellite and // remote sides. if (remoteDCUsedAsSatellite) { std::map>, int> tmpIdUsed; auto remoteLogs = getWorkersForTlogs(conf, conf.getRemoteTLogReplicationFactor(), conf.getRemoteTLogReplicationFactor(), conf.getRemoteTLogPolicy(), tmpIdUsed, false, { remoteRegion.dcId }, {}); std::transform(remoteLogs.begin(), remoteLogs.end(), std::back_inserter(exclusionWorkerIds), [](const WorkerDetails& in) { return in.interf.id(); }); } if (satelliteFallback) { return getWorkersForTlogs(conf, region.satelliteTLogReplicationFactorFallback, desiredSatelliteTLogs > 0 ? desiredSatelliteTLogs : conf.getDesiredSatelliteLogs(region.dcId) * region.satelliteTLogUsableDcsFallback / region.satelliteTLogUsableDcs, region.satelliteTLogPolicyFallback, id_used, checkStable, satelliteDCs, exclusionWorkerIds); } else { return getWorkersForTlogs(conf, region.satelliteTLogReplicationFactor, desiredSatelliteTLogs > 0 ? desiredSatelliteTLogs : conf.getDesiredSatelliteLogs(region.dcId), region.satelliteTLogPolicy, id_used, checkStable, satelliteDCs, exclusionWorkerIds); } } catch (Error& e) { if (e.code() != error_code_no_more_servers) { throw; } } startDC++; } } ProcessClass::Fitness getBestFitnessForRoleInDatacenter(ProcessClass::ClusterRole role) { ProcessClass::Fitness bestFitness = ProcessClass::NeverAssign; for (const auto& it : id_worker) { if (it.second.priorityInfo.isExcluded || it.second.details.interf.locality.dcId() != clusterControllerDcId) { continue; } bestFitness = std::min(bestFitness, it.second.details.processClass.machineClassFitness(role)); } return bestFitness; } WorkerFitnessInfo getWorkerForRoleInDatacenter(Optional> const& dcId, ProcessClass::ClusterRole role, ProcessClass::Fitness unacceptableFitness, DatabaseConfiguration const& conf, std::map>, int>& id_used, std::map>, int> preferredSharing = {}, bool checkStable = false) { std::map, std::vector> fitness_workers; for (auto& it : id_worker) { auto fitness = it.second.details.processClass.machineClassFitness(role); if (conf.isExcludedServer(it.second.details.interf.addresses()) || isExcludedDegradedServer(it.second.details.interf.addresses())) { fitness = std::max(fitness, ProcessClass::ExcludeFit); } if (workerAvailable(it.second, checkStable) && fitness < unacceptableFitness && it.second.details.interf.locality.dcId() == dcId) { auto sharing = preferredSharing.find(it.first); fitness_workers[std::make_tuple(fitness, id_used[it.first], isLongLivedStateless(it.first), sharing != preferredSharing.end() ? sharing->second : 1e6)] .push_back(it.second.details); } } if (fitness_workers.size()) { auto worker = deterministicRandom()->randomChoice(fitness_workers.begin()->second); id_used[worker.interf.locality.processId()]++; return WorkerFitnessInfo(worker, std::max(ProcessClass::GoodFit, std::get<0>(fitness_workers.begin()->first)), std::get<1>(fitness_workers.begin()->first)); } throw no_more_servers(); } std::vector getWorkersForRoleInDatacenter( Optional> const& dcId, ProcessClass::ClusterRole role, int amount, DatabaseConfiguration const& conf, std::map>, int>& id_used, std::map>, int> preferredSharing = {}, Optional minWorker = Optional(), bool checkStable = false) { std::map, std::vector> fitness_workers; std::vector results; if (minWorker.present()) { results.push_back(minWorker.get().worker); } if (amount <= results.size()) { return results; } for (auto& it : id_worker) { auto fitness = it.second.details.processClass.machineClassFitness(role); if (workerAvailable(it.second, checkStable) && !conf.isExcludedServer(it.second.details.interf.addresses()) && !isExcludedDegradedServer(it.second.details.interf.addresses()) && it.second.details.interf.locality.dcId() == dcId && (!minWorker.present() || (it.second.details.interf.id() != minWorker.get().worker.interf.id() && (fitness < minWorker.get().fitness || (fitness == minWorker.get().fitness && id_used[it.first] <= minWorker.get().used))))) { auto sharing = preferredSharing.find(it.first); fitness_workers[std::make_tuple(fitness, id_used[it.first], isLongLivedStateless(it.first), sharing != preferredSharing.end() ? sharing->second : 1e6)] .push_back(it.second.details); } } for (auto& it : fitness_workers) { deterministicRandom()->randomShuffle(it.second); for (int i = 0; i < it.second.size(); i++) { results.push_back(it.second[i]); id_used[it.second[i].interf.locality.processId()]++; if (results.size() == amount) return results; } } return results; } // Allows the comparison of two different recruitments to determine which one is better // Tlog recruitment is different from all the other roles, in that it avoids degraded processes // And tried to avoid recruitment in the same DC as the cluster controller struct RoleFitness { ProcessClass::Fitness bestFit; ProcessClass::Fitness worstFit; ProcessClass::ClusterRole role; int count; int worstUsed = 1; bool degraded = false; RoleFitness(int bestFit, int worstFit, int count, ProcessClass::ClusterRole role) : bestFit((ProcessClass::Fitness)bestFit), worstFit((ProcessClass::Fitness)worstFit), role(role), count(count) {} RoleFitness(int fitness, int count, ProcessClass::ClusterRole role) : bestFit((ProcessClass::Fitness)fitness), worstFit((ProcessClass::Fitness)fitness), role(role), count(count) {} RoleFitness() : bestFit(ProcessClass::NeverAssign), worstFit(ProcessClass::NeverAssign), role(ProcessClass::NoRole), count(0) {} RoleFitness(const std::vector& workers, ProcessClass::ClusterRole role, const std::map>, int>& id_used) : role(role) { // Every recruitment will attempt to recruit the preferred amount through GoodFit, // So a recruitment which only has BestFit is not better than one that has a GoodFit process worstFit = ProcessClass::GoodFit; degraded = false; bestFit = ProcessClass::NeverAssign; worstUsed = 1; for (auto& it : workers) { auto thisFit = it.processClass.machineClassFitness(role); auto thisUsed = id_used.find(it.interf.locality.processId()); if (thisUsed == id_used.end()) { TraceEvent(SevError, "UsedNotFound").detail("ProcessId", it.interf.locality.processId().get()); ASSERT(false); } if (thisUsed->second == 0) { TraceEvent(SevError, "UsedIsZero").detail("ProcessId", it.interf.locality.processId().get()); ASSERT(false); } bestFit = std::min(bestFit, thisFit); if (thisFit > worstFit) { worstFit = thisFit; worstUsed = thisUsed->second; } else if (thisFit == worstFit) { worstUsed = std::max(worstUsed, thisUsed->second); } degraded = degraded || it.degraded; } count = workers.size(); // degraded is only used for recruitment of tlogs if (role != ProcessClass::TLog) { degraded = false; } } bool operator<(RoleFitness const& r) const { if (worstFit != r.worstFit) return worstFit < r.worstFit; if (worstUsed != r.worstUsed) return worstUsed < r.worstUsed; if (count != r.count) return count > r.count; if (degraded != r.degraded) return r.degraded; // FIXME: TLog recruitment process does not guarantee the best fit is not worsened. if (role != ProcessClass::TLog && role != ProcessClass::LogRouter && bestFit != r.bestFit) return bestFit < r.bestFit; return false; } bool operator>(RoleFitness const& r) const { return r < *this; } bool operator<=(RoleFitness const& r) const { return !(*this > r); } bool operator>=(RoleFitness const& r) const { return !(*this < r); } bool betterCount(RoleFitness const& r) const { if (count > r.count) return true; if (worstFit != r.worstFit) return worstFit < r.worstFit; if (worstUsed != r.worstUsed) return worstUsed < r.worstUsed; if (degraded != r.degraded) return r.degraded; return false; } bool operator==(RoleFitness const& r) const { return worstFit == r.worstFit && worstUsed == r.worstUsed && bestFit == r.bestFit && count == r.count && degraded == r.degraded; } std::string toString() const { return format("%d %d %d %d %d", worstFit, worstUsed, count, degraded, bestFit); } }; std::set>> getDatacenters(DatabaseConfiguration const& conf, bool checkStable = false) { std::set>> result; for (auto& it : id_worker) if (workerAvailable(it.second, checkStable) && !conf.isExcludedServer(it.second.details.interf.addresses()) && !isExcludedDegradedServer(it.second.details.interf.addresses())) result.insert(it.second.details.interf.locality.dcId()); return result; } void updateKnownIds(std::map>, int>* id_used) { (*id_used)[masterProcessId]++; (*id_used)[clusterControllerProcessId]++; } RecruitRemoteFromConfigurationReply findRemoteWorkersForConfiguration( RecruitRemoteFromConfigurationRequest const& req) { RecruitRemoteFromConfigurationReply result; std::map>, int> id_used; updateKnownIds(&id_used); std::set> remoteDC; remoteDC.insert(req.dcId); auto remoteLogs = getWorkersForTlogs(req.configuration, req.configuration.getRemoteTLogReplicationFactor(), req.configuration.getDesiredRemoteLogs(), req.configuration.getRemoteTLogPolicy(), id_used, false, remoteDC, req.exclusionWorkerIds); for (int i = 0; i < remoteLogs.size(); i++) { result.remoteTLogs.push_back(remoteLogs[i].interf); } auto logRouters = getWorkersForRoleInDatacenter( req.dcId, ProcessClass::LogRouter, req.logRouterCount, req.configuration, id_used); for (int i = 0; i < logRouters.size(); i++) { result.logRouters.push_back(logRouters[i].interf); } if (!goodRemoteRecruitmentTime.isReady() && ((RoleFitness( SERVER_KNOBS->EXPECTED_TLOG_FITNESS, req.configuration.getDesiredRemoteLogs(), ProcessClass::TLog) .betterCount(RoleFitness(remoteLogs, ProcessClass::TLog, id_used))) || (RoleFitness(SERVER_KNOBS->EXPECTED_LOG_ROUTER_FITNESS, req.logRouterCount, ProcessClass::LogRouter) .betterCount(RoleFitness(logRouters, ProcessClass::LogRouter, id_used))))) { throw operation_failed(); } return result; } // Given datacenter ID, returns the primary and remote regions. std::pair getPrimaryAndRemoteRegion(const std::vector& regions, Key dcId) { RegionInfo region; RegionInfo remoteRegion; for (const auto& r : regions) { if (r.dcId == dcId) { region = r; } else { remoteRegion = r; } } return std::make_pair(region, remoteRegion); } ErrorOr findWorkersForConfigurationFromDC(RecruitFromConfigurationRequest const& req, Optional dcId) { RecruitFromConfigurationReply result; std::map>, int> id_used; updateKnownIds(&id_used); ASSERT(dcId.present()); std::set> primaryDC; primaryDC.insert(dcId); result.dcId = dcId; auto [region, remoteRegion] = getPrimaryAndRemoteRegion(req.configuration.regions, dcId.get()); if (req.recruitSeedServers) { auto primaryStorageServers = getWorkersForSeedServers(req.configuration, req.configuration.storagePolicy, dcId); for (int i = 0; i < primaryStorageServers.size(); i++) { result.storageServers.push_back(primaryStorageServers[i].interf); } } auto tlogs = getWorkersForTlogs(req.configuration, req.configuration.tLogReplicationFactor, req.configuration.getDesiredLogs(), req.configuration.tLogPolicy, id_used, false, primaryDC); for (int i = 0; i < tlogs.size(); i++) { result.tLogs.push_back(tlogs[i].interf); } std::vector satelliteLogs; if (region.satelliteTLogReplicationFactor > 0 && req.configuration.usableRegions > 1) { satelliteLogs = getWorkersForSatelliteLogs(req.configuration, region, remoteRegion, id_used, result.satelliteFallback); for (int i = 0; i < satelliteLogs.size(); i++) { result.satelliteTLogs.push_back(satelliteLogs[i].interf); } } std::map>, int> preferredSharing; auto first_commit_proxy = getWorkerForRoleInDatacenter( dcId, ProcessClass::CommitProxy, ProcessClass::ExcludeFit, req.configuration, id_used, preferredSharing); preferredSharing[first_commit_proxy.worker.interf.locality.processId()] = 0; auto first_grv_proxy = getWorkerForRoleInDatacenter( dcId, ProcessClass::GrvProxy, ProcessClass::ExcludeFit, req.configuration, id_used, preferredSharing); preferredSharing[first_grv_proxy.worker.interf.locality.processId()] = 1; auto first_resolver = getWorkerForRoleInDatacenter( dcId, ProcessClass::Resolver, ProcessClass::ExcludeFit, req.configuration, id_used, preferredSharing); preferredSharing[first_resolver.worker.interf.locality.processId()] = 2; // If one of the first process recruitments is forced to share a process, allow all of next recruitments // to also share a process. auto maxUsed = std::max({ first_commit_proxy.used, first_grv_proxy.used, first_resolver.used }); first_commit_proxy.used = maxUsed; first_grv_proxy.used = maxUsed; first_resolver.used = maxUsed; auto commit_proxies = getWorkersForRoleInDatacenter(dcId, ProcessClass::CommitProxy, req.configuration.getDesiredCommitProxies(), req.configuration, id_used, preferredSharing, first_commit_proxy); auto grv_proxies = getWorkersForRoleInDatacenter(dcId, ProcessClass::GrvProxy, req.configuration.getDesiredGrvProxies(), req.configuration, id_used, preferredSharing, first_grv_proxy); auto resolvers = getWorkersForRoleInDatacenter(dcId, ProcessClass::Resolver, req.configuration.getDesiredResolvers(), req.configuration, id_used, preferredSharing, first_resolver); for (int i = 0; i < commit_proxies.size(); i++) result.commitProxies.push_back(commit_proxies[i].interf); for (int i = 0; i < grv_proxies.size(); i++) result.grvProxies.push_back(grv_proxies[i].interf); for (int i = 0; i < resolvers.size(); i++) result.resolvers.push_back(resolvers[i].interf); if (req.maxOldLogRouters > 0) { if (tlogs.size() == 1) { result.oldLogRouters.push_back(tlogs[0].interf); } else { for (int i = 0; i < tlogs.size(); i++) { if (tlogs[i].interf.locality.processId() != clusterControllerProcessId) { result.oldLogRouters.push_back(tlogs[i].interf); } } } } if (req.configuration.backupWorkerEnabled) { const int nBackup = std::max( (req.configuration.desiredLogRouterCount > 0 ? req.configuration.desiredLogRouterCount : tlogs.size()), req.maxOldLogRouters); auto backupWorkers = getWorkersForRoleInDatacenter(dcId, ProcessClass::Backup, nBackup, req.configuration, id_used); std::transform(backupWorkers.begin(), backupWorkers.end(), std::back_inserter(result.backupWorkers), [](const WorkerDetails& w) { return w.interf; }); } if (!goodRecruitmentTime.isReady() && (RoleFitness(SERVER_KNOBS->EXPECTED_TLOG_FITNESS, req.configuration.getDesiredLogs(), ProcessClass::TLog) .betterCount(RoleFitness(tlogs, ProcessClass::TLog, id_used)) || (region.satelliteTLogReplicationFactor > 0 && req.configuration.usableRegions > 1 && RoleFitness(SERVER_KNOBS->EXPECTED_TLOG_FITNESS, req.configuration.getDesiredSatelliteLogs(dcId), ProcessClass::TLog) .betterCount(RoleFitness(satelliteLogs, ProcessClass::TLog, id_used))) || RoleFitness(SERVER_KNOBS->EXPECTED_COMMIT_PROXY_FITNESS, req.configuration.getDesiredCommitProxies(), ProcessClass::CommitProxy) .betterCount(RoleFitness(commit_proxies, ProcessClass::CommitProxy, id_used)) || RoleFitness(SERVER_KNOBS->EXPECTED_GRV_PROXY_FITNESS, req.configuration.getDesiredGrvProxies(), ProcessClass::GrvProxy) .betterCount(RoleFitness(grv_proxies, ProcessClass::GrvProxy, id_used)) || RoleFitness(SERVER_KNOBS->EXPECTED_RESOLVER_FITNESS, req.configuration.getDesiredResolvers(), ProcessClass::Resolver) .betterCount(RoleFitness(resolvers, ProcessClass::Resolver, id_used)))) { return operation_failed(); } return result; } RecruitFromConfigurationReply findWorkersForConfigurationDispatch(RecruitFromConfigurationRequest const& req) { if (req.configuration.regions.size() > 1) { std::vector regions = req.configuration.regions; if (regions[0].priority == regions[1].priority && regions[1].dcId == clusterControllerDcId.get()) { TraceEvent("CCSwitchPrimaryDc", id) .detail("CCDcId", clusterControllerDcId.get()) .detail("OldPrimaryDcId", regions[0].dcId) .detail("NewPrimaryDcId", regions[1].dcId); std::swap(regions[0], regions[1]); } if (regions[1].dcId == clusterControllerDcId.get() && (!versionDifferenceUpdated || datacenterVersionDifference >= SERVER_KNOBS->MAX_VERSION_DIFFERENCE)) { if (regions[1].priority >= 0) { TraceEvent("CCSwitchPrimaryDcVersionDifference", id) .detail("CCDcId", clusterControllerDcId.get()) .detail("OldPrimaryDcId", regions[0].dcId) .detail("NewPrimaryDcId", regions[1].dcId); std::swap(regions[0], regions[1]); } else { TraceEvent(SevWarnAlways, "CCDcPriorityNegative") .detail("DcId", regions[1].dcId) .detail("Priority", regions[1].priority) .detail("FindWorkersInDc", regions[0].dcId) .detail("Warning", "Failover did not happen but CC is in remote DC"); } } TraceEvent("CCFindWorkersForConfiguration", id) .detail("CCDcId", clusterControllerDcId.get()) .detail("Region0DcId", regions[0].dcId) .detail("Region1DcId", regions[1].dcId) .detail("DatacenterVersionDifference", datacenterVersionDifference) .detail("VersionDifferenceUpdated", versionDifferenceUpdated); bool setPrimaryDesired = false; try { auto reply = findWorkersForConfigurationFromDC(req, regions[0].dcId); setPrimaryDesired = true; std::vector> dcPriority; dcPriority.push_back(regions[0].dcId); dcPriority.push_back(regions[1].dcId); desiredDcIds.set(dcPriority); if (reply.isError()) { throw reply.getError(); } else if (regions[0].dcId == clusterControllerDcId.get()) { return reply.get(); } TraceEvent(SevWarn, "CCRecruitmentFailed", id) .detail("Reason", "Recruited Txn system and CC are in different DCs") .detail("CCDcId", clusterControllerDcId.get()) .detail("RecruitedTxnSystemDcId", regions[0].dcId); throw no_more_servers(); } catch (Error& e) { if (!goodRemoteRecruitmentTime.isReady() && regions[1].dcId != clusterControllerDcId.get()) { throw operation_failed(); } if (e.code() != error_code_no_more_servers || regions[1].priority < 0) { throw; } TraceEvent(SevWarn, "AttemptingRecruitmentInRemoteDc", id) .detail("SetPrimaryDesired", setPrimaryDesired) .error(e); auto reply = findWorkersForConfigurationFromDC(req, regions[1].dcId); if (!setPrimaryDesired) { std::vector> dcPriority; dcPriority.push_back(regions[1].dcId); dcPriority.push_back(regions[0].dcId); desiredDcIds.set(dcPriority); } if (reply.isError()) { throw reply.getError(); } else if (regions[1].dcId == clusterControllerDcId.get()) { return reply.get(); } throw; } } else if (req.configuration.regions.size() == 1) { std::vector> dcPriority; dcPriority.push_back(req.configuration.regions[0].dcId); desiredDcIds.set(dcPriority); auto reply = findWorkersForConfigurationFromDC(req, req.configuration.regions[0].dcId); if (reply.isError()) { throw reply.getError(); } else if (req.configuration.regions[0].dcId == clusterControllerDcId.get()) { return reply.get(); } throw no_more_servers(); } else { RecruitFromConfigurationReply result; std::map>, int> id_used; updateKnownIds(&id_used); auto tlogs = getWorkersForTlogs(req.configuration, req.configuration.tLogReplicationFactor, req.configuration.getDesiredLogs(), req.configuration.tLogPolicy, id_used); for (int i = 0; i < tlogs.size(); i++) { result.tLogs.push_back(tlogs[i].interf); } if (req.maxOldLogRouters > 0) { if (tlogs.size() == 1) { result.oldLogRouters.push_back(tlogs[0].interf); } else { for (int i = 0; i < tlogs.size(); i++) { if (tlogs[i].interf.locality.processId() != clusterControllerProcessId) { result.oldLogRouters.push_back(tlogs[i].interf); } } } } if (req.recruitSeedServers) { auto primaryStorageServers = getWorkersForSeedServers(req.configuration, req.configuration.storagePolicy); for (int i = 0; i < primaryStorageServers.size(); i++) result.storageServers.push_back(primaryStorageServers[i].interf); } auto datacenters = getDatacenters(req.configuration); std::tuple bestFitness; int numEquivalent = 1; Optional bestDC; for (auto dcId : datacenters) { try { // SOMEDAY: recruitment in other DCs besides the clusterControllerDcID will not account for the // processes used by the master and cluster controller properly. auto used = id_used; std::map>, int> preferredSharing; auto first_commit_proxy = getWorkerForRoleInDatacenter(dcId, ProcessClass::CommitProxy, ProcessClass::ExcludeFit, req.configuration, used, preferredSharing); preferredSharing[first_commit_proxy.worker.interf.locality.processId()] = 0; auto first_grv_proxy = getWorkerForRoleInDatacenter(dcId, ProcessClass::GrvProxy, ProcessClass::ExcludeFit, req.configuration, used, preferredSharing); preferredSharing[first_grv_proxy.worker.interf.locality.processId()] = 1; auto first_resolver = getWorkerForRoleInDatacenter(dcId, ProcessClass::Resolver, ProcessClass::ExcludeFit, req.configuration, used, preferredSharing); preferredSharing[first_resolver.worker.interf.locality.processId()] = 2; // If one of the first process recruitments is forced to share a process, allow all of next // recruitments to also share a process. auto maxUsed = std::max({ first_commit_proxy.used, first_grv_proxy.used, first_resolver.used }); first_commit_proxy.used = maxUsed; first_grv_proxy.used = maxUsed; first_resolver.used = maxUsed; auto commit_proxies = getWorkersForRoleInDatacenter(dcId, ProcessClass::CommitProxy, req.configuration.getDesiredCommitProxies(), req.configuration, used, preferredSharing, first_commit_proxy); auto grv_proxies = getWorkersForRoleInDatacenter(dcId, ProcessClass::GrvProxy, req.configuration.getDesiredGrvProxies(), req.configuration, used, preferredSharing, first_grv_proxy); auto resolvers = getWorkersForRoleInDatacenter(dcId, ProcessClass::Resolver, req.configuration.getDesiredResolvers(), req.configuration, used, preferredSharing, first_resolver); auto fitness = std::make_tuple(RoleFitness(commit_proxies, ProcessClass::CommitProxy, used), RoleFitness(grv_proxies, ProcessClass::GrvProxy, used), RoleFitness(resolvers, ProcessClass::Resolver, used)); if (dcId == clusterControllerDcId) { bestFitness = fitness; bestDC = dcId; for (int i = 0; i < resolvers.size(); i++) { result.resolvers.push_back(resolvers[i].interf); } for (int i = 0; i < commit_proxies.size(); i++) { result.commitProxies.push_back(commit_proxies[i].interf); } for (int i = 0; i < grv_proxies.size(); i++) { result.grvProxies.push_back(grv_proxies[i].interf); } if (req.configuration.backupWorkerEnabled) { const int nBackup = std::max(tlogs.size(), req.maxOldLogRouters); auto backupWorkers = getWorkersForRoleInDatacenter( dcId, ProcessClass::Backup, nBackup, req.configuration, used); std::transform(backupWorkers.begin(), backupWorkers.end(), std::back_inserter(result.backupWorkers), [](const WorkerDetails& w) { return w.interf; }); } break; } else { if (fitness < bestFitness) { bestFitness = fitness; numEquivalent = 1; bestDC = dcId; } else if (fitness == bestFitness && deterministicRandom()->random01() < 1.0 / ++numEquivalent) { bestDC = dcId; } } } catch (Error& e) { if (e.code() != error_code_no_more_servers) { throw; } } } if (bestDC != clusterControllerDcId) { TraceEvent("BestDCIsNotClusterDC").log(); std::vector> dcPriority; dcPriority.push_back(bestDC); desiredDcIds.set(dcPriority); throw no_more_servers(); } // If this cluster controller dies, do not prioritize recruiting the next one in the same DC desiredDcIds.set(std::vector>()); TraceEvent("FindWorkersForConfig") .detail("Replication", req.configuration.tLogReplicationFactor) .detail("DesiredLogs", req.configuration.getDesiredLogs()) .detail("ActualLogs", result.tLogs.size()) .detail("DesiredCommitProxies", req.configuration.getDesiredCommitProxies()) .detail("ActualCommitProxies", result.commitProxies.size()) .detail("DesiredGrvProxies", req.configuration.getDesiredGrvProxies()) .detail("ActualGrvProxies", result.grvProxies.size()) .detail("DesiredResolvers", req.configuration.getDesiredResolvers()) .detail("ActualResolvers", result.resolvers.size()); if (!goodRecruitmentTime.isReady() && (RoleFitness( SERVER_KNOBS->EXPECTED_TLOG_FITNESS, req.configuration.getDesiredLogs(), ProcessClass::TLog) .betterCount(RoleFitness(tlogs, ProcessClass::TLog, id_used)) || RoleFitness(SERVER_KNOBS->EXPECTED_COMMIT_PROXY_FITNESS, req.configuration.getDesiredCommitProxies(), ProcessClass::CommitProxy) .betterCount(std::get<0>(bestFitness)) || RoleFitness(SERVER_KNOBS->EXPECTED_GRV_PROXY_FITNESS, req.configuration.getDesiredGrvProxies(), ProcessClass::GrvProxy) .betterCount(std::get<1>(bestFitness)) || RoleFitness(SERVER_KNOBS->EXPECTED_RESOLVER_FITNESS, req.configuration.getDesiredResolvers(), ProcessClass::Resolver) .betterCount(std::get<2>(bestFitness)))) { throw operation_failed(); } return result; } } void updateIdUsed(const std::vector& workers, std::map>, int>& id_used) { for (auto& it : workers) { id_used[it.locality.processId()]++; } } void compareWorkers(const DatabaseConfiguration& conf, const std::vector& first, std::map>, int>& firstUsed, const std::vector& second, std::map>, int>& secondUsed, ProcessClass::ClusterRole role, std::string description) { std::vector firstDetails; for (auto& it : first) { auto w = id_worker.find(it.locality.processId()); ASSERT(w != id_worker.end()); ASSERT(!conf.isExcludedServer(w->second.details.interf.addresses())); firstDetails.push_back(w->second.details); //TraceEvent("CompareAddressesFirst").detail(description.c_str(), w->second.details.interf.address()); } RoleFitness firstFitness(firstDetails, role, firstUsed); std::vector secondDetails; for (auto& it : second) { auto w = id_worker.find(it.locality.processId()); ASSERT(w != id_worker.end()); ASSERT(!conf.isExcludedServer(w->second.details.interf.addresses())); secondDetails.push_back(w->second.details); //TraceEvent("CompareAddressesSecond").detail(description.c_str(), w->second.details.interf.address()); } RoleFitness secondFitness(secondDetails, role, secondUsed); if (!(firstFitness == secondFitness)) { TraceEvent(SevError, "NonDeterministicRecruitment") .detail("FirstFitness", firstFitness.toString()) .detail("SecondFitness", secondFitness.toString()) .detail("ClusterRole", role); } } RecruitFromConfigurationReply findWorkersForConfiguration(RecruitFromConfigurationRequest const& req) { RecruitFromConfigurationReply rep = findWorkersForConfigurationDispatch(req); if (g_network->isSimulated()) { // FIXME: The logic to pick a satellite in a remote region is not // deterministic and can therefore break this nondeterminism check. // Since satellites will generally be in the primary region, // disable the determinism check for remote region satellites. bool remoteDCUsedAsSatellite = false; if (req.configuration.regions.size() > 1) { auto [region, remoteRegion] = getPrimaryAndRemoteRegion(req.configuration.regions, req.configuration.regions[0].dcId); for (const auto& satellite : region.satellites) { if (satellite.dcId == remoteRegion.dcId) { remoteDCUsedAsSatellite = true; } } } if (!remoteDCUsedAsSatellite) { RecruitFromConfigurationReply compare = findWorkersForConfigurationDispatch(req); std::map>, int> firstUsed; std::map>, int> secondUsed; updateKnownIds(&firstUsed); updateKnownIds(&secondUsed); // auto mworker = id_worker.find(masterProcessId); //TraceEvent("CompareAddressesMaster") // .detail("Master", // mworker != id_worker.end() ? mworker->second.details.interf.address() : NetworkAddress()); updateIdUsed(rep.tLogs, firstUsed); updateIdUsed(compare.tLogs, secondUsed); compareWorkers( req.configuration, rep.tLogs, firstUsed, compare.tLogs, secondUsed, ProcessClass::TLog, "TLog"); updateIdUsed(rep.satelliteTLogs, firstUsed); updateIdUsed(compare.satelliteTLogs, secondUsed); compareWorkers(req.configuration, rep.satelliteTLogs, firstUsed, compare.satelliteTLogs, secondUsed, ProcessClass::TLog, "Satellite"); updateIdUsed(rep.commitProxies, firstUsed); updateIdUsed(compare.commitProxies, secondUsed); updateIdUsed(rep.grvProxies, firstUsed); updateIdUsed(compare.grvProxies, secondUsed); updateIdUsed(rep.resolvers, firstUsed); updateIdUsed(compare.resolvers, secondUsed); compareWorkers(req.configuration, rep.commitProxies, firstUsed, compare.commitProxies, secondUsed, ProcessClass::CommitProxy, "CommitProxy"); compareWorkers(req.configuration, rep.grvProxies, firstUsed, compare.grvProxies, secondUsed, ProcessClass::GrvProxy, "GrvProxy"); compareWorkers(req.configuration, rep.resolvers, firstUsed, compare.resolvers, secondUsed, ProcessClass::Resolver, "Resolver"); updateIdUsed(rep.backupWorkers, firstUsed); updateIdUsed(compare.backupWorkers, secondUsed); compareWorkers(req.configuration, rep.backupWorkers, firstUsed, compare.backupWorkers, secondUsed, ProcessClass::Backup, "Backup"); } } return rep; } // Check if txn system is recruited successfully in each region void checkRegions(const std::vector& regions) { if (desiredDcIds.get().present() && desiredDcIds.get().get().size() == 2 && desiredDcIds.get().get()[0].get() == regions[0].dcId && desiredDcIds.get().get()[1].get() == regions[1].dcId) { return; } try { std::map>, int> id_used; getWorkerForRoleInDatacenter(regions[0].dcId, ProcessClass::ClusterController, ProcessClass::ExcludeFit, db.config, id_used, {}, true); getWorkerForRoleInDatacenter( regions[0].dcId, ProcessClass::Master, ProcessClass::ExcludeFit, db.config, id_used, {}, true); std::set> primaryDC; primaryDC.insert(regions[0].dcId); getWorkersForTlogs(db.config, db.config.tLogReplicationFactor, db.config.getDesiredLogs(), db.config.tLogPolicy, id_used, true, primaryDC); if (regions[0].satelliteTLogReplicationFactor > 0 && db.config.usableRegions > 1) { bool satelliteFallback = false; getWorkersForSatelliteLogs(db.config, regions[0], regions[1], id_used, satelliteFallback, true); } getWorkerForRoleInDatacenter( regions[0].dcId, ProcessClass::Resolver, ProcessClass::ExcludeFit, db.config, id_used, {}, true); getWorkerForRoleInDatacenter( regions[0].dcId, ProcessClass::CommitProxy, ProcessClass::ExcludeFit, db.config, id_used, {}, true); getWorkerForRoleInDatacenter( regions[0].dcId, ProcessClass::GrvProxy, ProcessClass::ExcludeFit, db.config, id_used, {}, true); std::vector> dcPriority; dcPriority.push_back(regions[0].dcId); dcPriority.push_back(regions[1].dcId); desiredDcIds.set(dcPriority); } catch (Error& e) { if (e.code() != error_code_no_more_servers) { throw; } } } void checkRecoveryStalled() { if ((db.serverInfo->get().recoveryState == RecoveryState::RECRUITING || db.serverInfo->get().recoveryState == RecoveryState::ACCEPTING_COMMITS || db.serverInfo->get().recoveryState == RecoveryState::ALL_LOGS_RECRUITED) && db.recoveryStalled) { if (db.config.regions.size() > 1) { auto regions = db.config.regions; if (clusterControllerDcId.get() == regions[0].dcId && regions[1].priority >= 0) { std::swap(regions[0], regions[1]); } ASSERT(regions[1].priority < 0 || clusterControllerDcId.get() == regions[1].dcId); checkRegions(regions); } } } void updateIdUsed(const std::vector& workers, std::map>, int>& id_used) { for (auto& it : workers) { id_used[it.interf.locality.processId()]++; } } // FIXME: determine when to fail the cluster controller when a primaryDC has not been set // This function returns true when the cluster controller determines it is worth forcing // a master recovery in order to change the recruited processes in the transaction subsystem. bool betterMasterExists() { const ServerDBInfo dbi = db.serverInfo->get(); if (dbi.recoveryState < RecoveryState::ACCEPTING_COMMITS) { return false; } // Do not trigger better master exists if the cluster controller is excluded, since the master will change // anyways once the cluster controller is moved if (id_worker[clusterControllerProcessId].priorityInfo.isExcluded) { TraceEvent("NewRecruitmentIsWorse", id).detail("Reason", "ClusterControllerExcluded"); return false; } if (db.config.regions.size() > 1 && db.config.regions[0].priority > db.config.regions[1].priority && db.config.regions[0].dcId != clusterControllerDcId.get() && versionDifferenceUpdated && datacenterVersionDifference < SERVER_KNOBS->MAX_VERSION_DIFFERENCE && remoteDCIsHealthy()) { checkRegions(db.config.regions); } // Get master process auto masterWorker = id_worker.find(dbi.master.locality.processId()); if (masterWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindMaster") .detail("ProcessID", dbi.master.locality.processId()); return false; } // Get tlog processes std::vector tlogs; std::vector remote_tlogs; std::vector satellite_tlogs; std::vector log_routers; std::set logRouterAddresses; std::vector backup_workers; std::set backup_addresses; for (auto& logSet : dbi.logSystemConfig.tLogs) { for (auto& it : logSet.tLogs) { auto tlogWorker = id_worker.find(it.interf().filteredLocality.processId()); if (tlogWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindTLog") .detail("ProcessID", it.interf().filteredLocality.processId()); return false; } if (tlogWorker->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "TLogExcluded") .detail("ProcessID", it.interf().filteredLocality.processId()); return true; } if (logSet.isLocal && logSet.locality == tagLocalitySatellite) { satellite_tlogs.push_back(tlogWorker->second.details); } else if (logSet.isLocal) { tlogs.push_back(tlogWorker->second.details); } else { remote_tlogs.push_back(tlogWorker->second.details); } } for (auto& it : logSet.logRouters) { auto tlogWorker = id_worker.find(it.interf().filteredLocality.processId()); if (tlogWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindLogRouter") .detail("ProcessID", it.interf().filteredLocality.processId()); return false; } if (tlogWorker->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "LogRouterExcluded") .detail("ProcessID", it.interf().filteredLocality.processId()); return true; } if (!logRouterAddresses.count(tlogWorker->second.details.interf.address())) { logRouterAddresses.insert(tlogWorker->second.details.interf.address()); log_routers.push_back(tlogWorker->second.details); } } for (const auto& worker : logSet.backupWorkers) { auto workerIt = id_worker.find(worker.interf().locality.processId()); if (workerIt == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindBackupWorker") .detail("ProcessID", worker.interf().locality.processId()); return false; } if (workerIt->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "BackupWorkerExcluded") .detail("ProcessID", worker.interf().locality.processId()); return true; } if (backup_addresses.count(workerIt->second.details.interf.address()) == 0) { backup_addresses.insert(workerIt->second.details.interf.address()); backup_workers.push_back(workerIt->second.details); } } } // Get commit proxy classes std::vector commitProxyClasses; for (auto& it : dbi.client.commitProxies) { auto commitProxyWorker = id_worker.find(it.processId); if (commitProxyWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindCommitProxy") .detail("ProcessID", it.processId); return false; } if (commitProxyWorker->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "CommitProxyExcluded") .detail("ProcessID", it.processId); return true; } commitProxyClasses.push_back(commitProxyWorker->second.details); } // Get grv proxy classes std::vector grvProxyClasses; for (auto& it : dbi.client.grvProxies) { auto grvProxyWorker = id_worker.find(it.processId); if (grvProxyWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindGrvProxy") .detail("ProcessID", it.processId); return false; } if (grvProxyWorker->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "GrvProxyExcluded") .detail("ProcessID", it.processId); return true; } grvProxyClasses.push_back(grvProxyWorker->second.details); } // Get resolver classes std::vector resolverClasses; for (auto& it : dbi.resolvers) { auto resolverWorker = id_worker.find(it.locality.processId()); if (resolverWorker == id_worker.end()) { TraceEvent("NewRecruitmentIsWorse", id) .detail("Reason", "CannotFindResolver") .detail("ProcessID", it.locality.processId()); return false; } if (resolverWorker->second.priorityInfo.isExcluded) { TraceEvent("BetterMasterExists", id) .detail("Reason", "ResolverExcluded") .detail("ProcessID", it.locality.processId()); return true; } resolverClasses.push_back(resolverWorker->second.details); } // Check master fitness. Don't return false if master is excluded in case all the processes are excluded, we // still need master for recovery. ProcessClass::Fitness oldMasterFit = masterWorker->second.details.processClass.machineClassFitness(ProcessClass::Master); if (db.config.isExcludedServer(dbi.master.addresses())) { oldMasterFit = std::max(oldMasterFit, ProcessClass::ExcludeFit); } std::map>, int> id_used; std::map>, int> old_id_used; id_used[clusterControllerProcessId]++; old_id_used[clusterControllerProcessId]++; WorkerFitnessInfo mworker = getWorkerForRoleInDatacenter( clusterControllerDcId, ProcessClass::Master, ProcessClass::NeverAssign, db.config, id_used, {}, true); auto newMasterFit = mworker.worker.processClass.machineClassFitness(ProcessClass::Master); if (db.config.isExcludedServer(mworker.worker.interf.addresses())) { newMasterFit = std::max(newMasterFit, ProcessClass::ExcludeFit); } old_id_used[masterWorker->first]++; if (oldMasterFit < newMasterFit) { TraceEvent("NewRecruitmentIsWorse", id) .detail("OldMasterFit", oldMasterFit) .detail("NewMasterFit", newMasterFit) .detail("OldIsCC", dbi.master.locality.processId() == clusterControllerProcessId) .detail("NewIsCC", mworker.worker.interf.locality.processId() == clusterControllerProcessId); ; return false; } if (oldMasterFit > newMasterFit || (dbi.master.locality.processId() == clusterControllerProcessId && mworker.worker.interf.locality.processId() != clusterControllerProcessId)) { TraceEvent("BetterMasterExists", id) .detail("OldMasterFit", oldMasterFit) .detail("NewMasterFit", newMasterFit) .detail("OldIsCC", dbi.master.locality.processId() == clusterControllerProcessId) .detail("NewIsCC", mworker.worker.interf.locality.processId() == clusterControllerProcessId); return true; } std::set> primaryDC; std::set> remoteDC; RegionInfo region; RegionInfo remoteRegion; if (db.config.regions.size()) { primaryDC.insert(clusterControllerDcId); for (auto& r : db.config.regions) { if (r.dcId != clusterControllerDcId.get()) { ASSERT(remoteDC.empty()); remoteDC.insert(r.dcId); remoteRegion = r; } else { ASSERT(region.dcId == StringRef()); region = r; } } } // Check tLog fitness updateIdUsed(tlogs, old_id_used); RoleFitness oldTLogFit(tlogs, ProcessClass::TLog, old_id_used); auto newTLogs = getWorkersForTlogs(db.config, db.config.tLogReplicationFactor, db.config.getDesiredLogs(), db.config.tLogPolicy, id_used, true, primaryDC); RoleFitness newTLogFit(newTLogs, ProcessClass::TLog, id_used); bool oldSatelliteFallback = false; if (region.satelliteTLogPolicyFallback.isValid()) { for (auto& logSet : dbi.logSystemConfig.tLogs) { if (region.satelliteTLogPolicy.isValid() && logSet.isLocal && logSet.locality == tagLocalitySatellite) { oldSatelliteFallback = logSet.tLogPolicy->info() != region.satelliteTLogPolicy->info(); ASSERT(!oldSatelliteFallback || (region.satelliteTLogPolicyFallback.isValid() && logSet.tLogPolicy->info() == region.satelliteTLogPolicyFallback->info())); break; } } } updateIdUsed(satellite_tlogs, old_id_used); RoleFitness oldSatelliteTLogFit(satellite_tlogs, ProcessClass::TLog, old_id_used); bool newSatelliteFallback = false; auto newSatelliteTLogs = satellite_tlogs; RoleFitness newSatelliteTLogFit = oldSatelliteTLogFit; if (region.satelliteTLogReplicationFactor > 0 && db.config.usableRegions > 1) { newSatelliteTLogs = getWorkersForSatelliteLogs(db.config, region, remoteRegion, id_used, newSatelliteFallback, true); newSatelliteTLogFit = RoleFitness(newSatelliteTLogs, ProcessClass::TLog, id_used); } std::map, int32_t> satellite_priority; for (auto& r : region.satellites) { satellite_priority[r.dcId] = r.priority; } int32_t oldSatelliteRegionFit = std::numeric_limits::max(); for (auto& it : satellite_tlogs) { if (satellite_priority.count(it.interf.locality.dcId())) { oldSatelliteRegionFit = std::min(oldSatelliteRegionFit, satellite_priority[it.interf.locality.dcId()]); } else { oldSatelliteRegionFit = -1; } } int32_t newSatelliteRegionFit = std::numeric_limits::max(); for (auto& it : newSatelliteTLogs) { if (satellite_priority.count(it.interf.locality.dcId())) { newSatelliteRegionFit = std::min(newSatelliteRegionFit, satellite_priority[it.interf.locality.dcId()]); } else { newSatelliteRegionFit = -1; } } if (oldSatelliteFallback && !newSatelliteFallback) { TraceEvent("BetterMasterExists", id) .detail("OldSatelliteFallback", oldSatelliteFallback) .detail("NewSatelliteFallback", newSatelliteFallback); return true; } if (!oldSatelliteFallback && newSatelliteFallback) { TraceEvent("NewRecruitmentIsWorse", id) .detail("OldSatelliteFallback", oldSatelliteFallback) .detail("NewSatelliteFallback", newSatelliteFallback); return false; } if (oldSatelliteRegionFit < newSatelliteRegionFit) { TraceEvent("BetterMasterExists", id) .detail("OldSatelliteRegionFit", oldSatelliteRegionFit) .detail("NewSatelliteRegionFit", newSatelliteRegionFit); return true; } if (oldSatelliteRegionFit > newSatelliteRegionFit) { TraceEvent("NewRecruitmentIsWorse", id) .detail("OldSatelliteRegionFit", oldSatelliteRegionFit) .detail("NewSatelliteRegionFit", newSatelliteRegionFit); return false; } updateIdUsed(remote_tlogs, old_id_used); RoleFitness oldRemoteTLogFit(remote_tlogs, ProcessClass::TLog, old_id_used); std::vector exclusionWorkerIds; auto fn = [](const WorkerDetails& in) { return in.interf.id(); }; std::transform(newTLogs.begin(), newTLogs.end(), std::back_inserter(exclusionWorkerIds), fn); std::transform(newSatelliteTLogs.begin(), newSatelliteTLogs.end(), std::back_inserter(exclusionWorkerIds), fn); RoleFitness newRemoteTLogFit = oldRemoteTLogFit; if (db.config.usableRegions > 1 && (dbi.recoveryState == RecoveryState::ALL_LOGS_RECRUITED || dbi.recoveryState == RecoveryState::FULLY_RECOVERED)) { newRemoteTLogFit = RoleFitness(getWorkersForTlogs(db.config, db.config.getRemoteTLogReplicationFactor(), db.config.getDesiredRemoteLogs(), db.config.getRemoteTLogPolicy(), id_used, true, remoteDC, exclusionWorkerIds), ProcessClass::TLog, id_used); } int oldRouterCount = oldTLogFit.count * std::max(1, db.config.desiredLogRouterCount / std::max(1, oldTLogFit.count)); int newRouterCount = newTLogFit.count * std::max(1, db.config.desiredLogRouterCount / std::max(1, newTLogFit.count)); updateIdUsed(log_routers, old_id_used); RoleFitness oldLogRoutersFit(log_routers, ProcessClass::LogRouter, old_id_used); RoleFitness newLogRoutersFit = oldLogRoutersFit; if (db.config.usableRegions > 1 && dbi.recoveryState == RecoveryState::FULLY_RECOVERED) { newLogRoutersFit = RoleFitness(getWorkersForRoleInDatacenter(*remoteDC.begin(), ProcessClass::LogRouter, newRouterCount, db.config, id_used, {}, Optional(), true), ProcessClass::LogRouter, id_used); } if (oldLogRoutersFit.count < oldRouterCount) { oldLogRoutersFit.worstFit = ProcessClass::NeverAssign; } if (newLogRoutersFit.count < newRouterCount) { newLogRoutersFit.worstFit = ProcessClass::NeverAssign; } // Check proxy/grvProxy/resolver fitness updateIdUsed(commitProxyClasses, old_id_used); updateIdUsed(grvProxyClasses, old_id_used); updateIdUsed(resolverClasses, old_id_used); RoleFitness oldCommitProxyFit(commitProxyClasses, ProcessClass::CommitProxy, old_id_used); RoleFitness oldGrvProxyFit(grvProxyClasses, ProcessClass::GrvProxy, old_id_used); RoleFitness oldResolverFit(resolverClasses, ProcessClass::Resolver, old_id_used); std::map>, int> preferredSharing; auto first_commit_proxy = getWorkerForRoleInDatacenter(clusterControllerDcId, ProcessClass::CommitProxy, ProcessClass::ExcludeFit, db.config, id_used, preferredSharing, true); preferredSharing[first_commit_proxy.worker.interf.locality.processId()] = 0; auto first_grv_proxy = getWorkerForRoleInDatacenter(clusterControllerDcId, ProcessClass::GrvProxy, ProcessClass::ExcludeFit, db.config, id_used, preferredSharing, true); preferredSharing[first_grv_proxy.worker.interf.locality.processId()] = 1; auto first_resolver = getWorkerForRoleInDatacenter(clusterControllerDcId, ProcessClass::Resolver, ProcessClass::ExcludeFit, db.config, id_used, preferredSharing, true); preferredSharing[first_resolver.worker.interf.locality.processId()] = 2; auto maxUsed = std::max({ first_commit_proxy.used, first_grv_proxy.used, first_resolver.used }); first_commit_proxy.used = maxUsed; first_grv_proxy.used = maxUsed; first_resolver.used = maxUsed; auto commit_proxies = getWorkersForRoleInDatacenter(clusterControllerDcId, ProcessClass::CommitProxy, db.config.getDesiredCommitProxies(), db.config, id_used, preferredSharing, first_commit_proxy, true); auto grv_proxies = getWorkersForRoleInDatacenter(clusterControllerDcId, ProcessClass::GrvProxy, db.config.getDesiredGrvProxies(), db.config, id_used, preferredSharing, first_grv_proxy, true); auto resolvers = getWorkersForRoleInDatacenter(clusterControllerDcId, ProcessClass::Resolver, db.config.getDesiredResolvers(), db.config, id_used, preferredSharing, first_resolver, true); RoleFitness newCommitProxyFit(commit_proxies, ProcessClass::CommitProxy, id_used); RoleFitness newGrvProxyFit(grv_proxies, ProcessClass::GrvProxy, id_used); RoleFitness newResolverFit(resolvers, ProcessClass::Resolver, id_used); // Check backup worker fitness updateIdUsed(backup_workers, old_id_used); RoleFitness oldBackupWorkersFit(backup_workers, ProcessClass::Backup, old_id_used); const int nBackup = backup_addresses.size(); RoleFitness newBackupWorkersFit(getWorkersForRoleInDatacenter(clusterControllerDcId, ProcessClass::Backup, nBackup, db.config, id_used, {}, Optional(), true), ProcessClass::Backup, id_used); auto oldFit = std::make_tuple(oldTLogFit, oldSatelliteTLogFit, oldCommitProxyFit, oldGrvProxyFit, oldResolverFit, oldBackupWorkersFit, oldRemoteTLogFit, oldLogRoutersFit); auto newFit = std::make_tuple(newTLogFit, newSatelliteTLogFit, newCommitProxyFit, newGrvProxyFit, newResolverFit, newBackupWorkersFit, newRemoteTLogFit, newLogRoutersFit); if (oldFit > newFit) { TraceEvent("BetterMasterExists", id) .detail("OldMasterFit", oldMasterFit) .detail("NewMasterFit", newMasterFit) .detail("OldTLogFit", oldTLogFit.toString()) .detail("NewTLogFit", newTLogFit.toString()) .detail("OldSatelliteFit", oldSatelliteTLogFit.toString()) .detail("NewSatelliteFit", newSatelliteTLogFit.toString()) .detail("OldCommitProxyFit", oldCommitProxyFit.toString()) .detail("NewCommitProxyFit", newCommitProxyFit.toString()) .detail("OldGrvProxyFit", oldGrvProxyFit.toString()) .detail("NewGrvProxyFit", newGrvProxyFit.toString()) .detail("OldResolverFit", oldResolverFit.toString()) .detail("NewResolverFit", newResolverFit.toString()) .detail("OldBackupWorkerFit", oldBackupWorkersFit.toString()) .detail("NewBackupWorkerFit", newBackupWorkersFit.toString()) .detail("OldRemoteFit", oldRemoteTLogFit.toString()) .detail("NewRemoteFit", newRemoteTLogFit.toString()) .detail("OldRouterFit", oldLogRoutersFit.toString()) .detail("NewRouterFit", newLogRoutersFit.toString()) .detail("OldSatelliteFallback", oldSatelliteFallback) .detail("NewSatelliteFallback", newSatelliteFallback); return true; } if (oldFit < newFit) { TraceEvent("NewRecruitmentIsWorse", id) .detail("OldMasterFit", oldMasterFit) .detail("NewMasterFit", newMasterFit) .detail("OldTLogFit", oldTLogFit.toString()) .detail("NewTLogFit", newTLogFit.toString()) .detail("OldSatelliteFit", oldSatelliteTLogFit.toString()) .detail("NewSatelliteFit", newSatelliteTLogFit.toString()) .detail("OldCommitProxyFit", oldCommitProxyFit.toString()) .detail("NewCommitProxyFit", newCommitProxyFit.toString()) .detail("OldGrvProxyFit", oldGrvProxyFit.toString()) .detail("NewGrvProxyFit", newGrvProxyFit.toString()) .detail("OldResolverFit", oldResolverFit.toString()) .detail("NewResolverFit", newResolverFit.toString()) .detail("OldBackupWorkerFit", oldBackupWorkersFit.toString()) .detail("NewBackupWorkerFit", newBackupWorkersFit.toString()) .detail("OldRemoteFit", oldRemoteTLogFit.toString()) .detail("NewRemoteFit", newRemoteTLogFit.toString()) .detail("OldRouterFit", oldLogRoutersFit.toString()) .detail("NewRouterFit", newLogRoutersFit.toString()) .detail("OldSatelliteFallback", oldSatelliteFallback) .detail("NewSatelliteFallback", newSatelliteFallback); } return false; } // Returns true iff processId is currently being used // for any non-singleton role other than master bool isUsedNotMaster(Optional processId) const { ASSERT(masterProcessId.present()); if (processId == masterProcessId) return false; auto& dbInfo = db.serverInfo->get(); for (const auto& tlogset : dbInfo.logSystemConfig.tLogs) { for (const auto& tlog : tlogset.tLogs) { if (tlog.present() && tlog.interf().filteredLocality.processId() == processId) return true; } } for (const CommitProxyInterface& interf : dbInfo.client.commitProxies) { if (interf.processId == processId) return true; } for (const GrvProxyInterface& interf : dbInfo.client.grvProxies) { if (interf.processId == processId) return true; } for (const ResolverInterface& interf : dbInfo.resolvers) { if (interf.locality.processId() == processId) return true; } if (processId == clusterControllerProcessId) return true; return false; } // Returns true iff // - role is master, or // - role is a singleton AND worker's pid is being used for any non-singleton role bool onMasterIsBetter(const WorkerDetails& worker, ProcessClass::ClusterRole role) const { ASSERT(masterProcessId.present()); const auto& pid = worker.interf.locality.processId(); if ((role != ProcessClass::DataDistributor && role != ProcessClass::Ratekeeper && role != ProcessClass::BlobManager) || pid == masterProcessId.get()) { return false; } return isUsedNotMaster(pid); } // Returns a map of for all non-singleton roles std::map>, int> getUsedIds() { std::map>, int> idUsed; updateKnownIds(&idUsed); auto& dbInfo = db.serverInfo->get(); for (const auto& tlogset : dbInfo.logSystemConfig.tLogs) { for (const auto& tlog : tlogset.tLogs) { if (tlog.present()) { idUsed[tlog.interf().filteredLocality.processId()]++; } } } for (const CommitProxyInterface& interf : dbInfo.client.commitProxies) { ASSERT(interf.processId.present()); idUsed[interf.processId]++; } for (const GrvProxyInterface& interf : dbInfo.client.grvProxies) { ASSERT(interf.processId.present()); idUsed[interf.processId]++; } for (const ResolverInterface& interf : dbInfo.resolvers) { ASSERT(interf.locality.processId().present()); idUsed[interf.locality.processId()]++; } return idUsed; } // Updates work health signals in `workerHealth` based on `req`. void updateWorkerHealth(const UpdateWorkerHealthRequest& req) { std::string degradedPeersString; for (int i = 0; i < req.degradedPeers.size(); ++i) { degradedPeersString += (i == 0 ? "" : " ") + req.degradedPeers[i].toString(); } TraceEvent("ClusterControllerUpdateWorkerHealth") .detail("WorkerAddress", req.address) .detail("DegradedPeers", degradedPeersString); // `req.degradedPeers` contains the latest peer performance view from the worker. Clear the worker if the // requested worker doesn't see any degraded peers. if (req.degradedPeers.empty()) { workerHealth.erase(req.address); return; } double currentTime = now(); // Current `workerHealth` doesn't have any information about the incoming worker. Add the worker into // `workerHealth`. if (workerHealth.find(req.address) == workerHealth.end()) { workerHealth[req.address] = {}; for (const auto& degradedPeer : req.degradedPeers) { workerHealth[req.address].degradedPeers[degradedPeer] = { currentTime, currentTime }; } return; } // The incoming worker already exists in `workerHealth`. auto& health = workerHealth[req.address]; // First, remove any degraded peers recorded in the `workerHealth`, but aren't in the incoming request. These // machines network performance should have recovered. std::unordered_set recoveredPeers; for (const auto& [peer, times] : health.degradedPeers) { recoveredPeers.insert(peer); } for (const auto& peer : req.degradedPeers) { if (recoveredPeers.find(peer) != recoveredPeers.end()) { recoveredPeers.erase(peer); } } for (const auto& peer : recoveredPeers) { health.degradedPeers.erase(peer); } // Update the worker's degradedPeers. for (const auto& peer : req.degradedPeers) { auto it = health.degradedPeers.find(peer); if (it == health.degradedPeers.end()) { health.degradedPeers[peer] = { currentTime, currentTime }; continue; } it->second.lastRefreshTime = currentTime; } } // Checks that if any worker or their degraded peers have recovered. If so, remove them from `workerHealth`. void updateRecoveredWorkers() { double currentTime = now(); for (auto& [workerAddress, health] : workerHealth) { for (auto it = health.degradedPeers.begin(); it != health.degradedPeers.end();) { if (currentTime - it->second.lastRefreshTime > SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL) { TraceEvent("WorkerPeerHealthRecovered").detail("Worker", workerAddress).detail("Peer", it->first); health.degradedPeers.erase(it++); } else { ++it; } } } for (auto it = workerHealth.begin(); it != workerHealth.end();) { if (it->second.degradedPeers.empty()) { TraceEvent("WorkerAllPeerHealthRecovered").detail("Worker", it->first); workerHealth.erase(it++); } else { ++it; } } } // Returns a list of servers who are experiencing degraded links. These are candidates to perform exclusion. Note // that only one endpoint of a bad link will be included in this list. std::unordered_set getServersWithDegradedLink() { updateRecoveredWorkers(); // Build a map keyed by measured degraded peer. This map gives the info that who complains a particular server. std::unordered_map> degradedLinkDst2Src; double currentTime = now(); for (const auto& [server, health] : workerHealth) { for (const auto& [degradedPeer, times] : health.degradedPeers) { if (currentTime - times.startTime < SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL) { // This degraded link is not long enough to be considered as degraded. continue; } degradedLinkDst2Src[degradedPeer].insert(server); } } // Sort degraded peers based on the number of workers complaining about it. std::vector> count2DegradedPeer; for (const auto& [degradedPeer, complainers] : degradedLinkDst2Src) { count2DegradedPeer.push_back({ complainers.size(), degradedPeer }); } std::sort(count2DegradedPeer.begin(), count2DegradedPeer.end(), std::greater<>()); // Go through all reported degraded peers by decreasing order of the number of complainers. For a particular // degraded peer, if a complainer has already be considered as degraded, we skip the current examine degraded // peer since there has been one endpoint on the link between degradedPeer and complainer considered as // degraded. This is to address the issue that both endpoints on a bad link may be considered as degraded // server. // // For example, if server A is already considered as a degraded server, and A complains B, we won't add B as // degraded since A is already considered as degraded. std::unordered_set currentDegradedServers; for (const auto& [complainerCount, badServer] : count2DegradedPeer) { for (const auto& complainer : degradedLinkDst2Src[badServer]) { if (currentDegradedServers.find(complainer) == currentDegradedServers.end()) { currentDegradedServers.insert(badServer); break; } } } // For degraded server that are complained by more than SERVER_KNOBS->CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE, we // don't know if it is a hot server, or the network is bad. We remove from the returned degraded server list. std::unordered_set currentDegradedServersWithinLimit; for (const auto& badServer : currentDegradedServers) { if (degradedLinkDst2Src[badServer].size() <= SERVER_KNOBS->CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE) { currentDegradedServersWithinLimit.insert(badServer); } } return currentDegradedServersWithinLimit; } // Whether the transaction system (in primary DC if in HA setting) contains degraded servers. bool transactionSystemContainsDegradedServers() { const ServerDBInfo dbi = db.serverInfo->get(); for (const auto& excludedServer : degradedServers) { if (dbi.master.addresses().contains(excludedServer)) { return true; } for (auto& logSet : dbi.logSystemConfig.tLogs) { if (!logSet.isLocal || logSet.locality == tagLocalitySatellite) { continue; } for (const auto& tlog : logSet.tLogs) { if (tlog.present() && tlog.interf().addresses().contains(excludedServer)) { return true; } } } for (auto& proxy : dbi.client.grvProxies) { if (proxy.addresses().contains(excludedServer)) { return true; } } for (auto& proxy : dbi.client.commitProxies) { if (proxy.addresses().contains(excludedServer)) { return true; } } for (auto& resolver : dbi.resolvers) { if (resolver.addresses().contains(excludedServer)) { return true; } } } return false; } // Whether transaction system in the remote DC, e.g. log router and tlogs in the remote DC, contains degraded // servers. bool remoteTransactionSystemContainsDegradedServers() { if (db.config.usableRegions <= 1) { return false; } for (const auto& excludedServer : degradedServers) { if (addressInDbAndRemoteDc(excludedServer, db.serverInfo)) { return true; } } return false; } // Returns true if remote DC is healthy and can failover to. bool remoteDCIsHealthy() { // When we just start, we ignore any remote DC health info since the current CC may be elected at wrong DC due // to that all the processes are still starting. if (machineStartTime() == 0) { return true; } if (now() - machineStartTime() < SERVER_KNOBS->INITIAL_UPDATE_CROSS_DC_INFO_DELAY) { return true; } // When remote DC health is not monitored, we may not know whether the remote is healthy or not. So return false // here to prevent failover. if (!remoteDCMonitorStarted) { return false; } return !remoteTransactionSystemContainsDegradedServers(); } // Returns true when the cluster controller should trigger a recovery due to degraded servers used in the // transaction system in the primary data center. bool shouldTriggerRecoveryDueToDegradedServers() { if (degradedServers.size() > SERVER_KNOBS->CC_MAX_EXCLUSION_DUE_TO_HEALTH) { return false; } if (db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { return false; } // Do not trigger recovery if the cluster controller is excluded, since the master will change // anyways once the cluster controller is moved if (id_worker[clusterControllerProcessId].priorityInfo.isExcluded) { return false; } return transactionSystemContainsDegradedServers(); } // Returns true when the cluster controller should trigger a failover due to degraded servers used in the // transaction system in the primary data center, and no degradation in the remote data center. bool shouldTriggerFailoverDueToDegradedServers() { if (db.config.usableRegions <= 1) { return false; } if (SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MIN_DEGRADATION > SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MAX_DEGRADATION) { TraceEvent(SevWarn, "TriggerFailoverDueToDegradedServersInvalidConfig") .suppressFor(1.0) .detail("Min", SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MIN_DEGRADATION) .detail("Max", SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MAX_DEGRADATION); return false; } if (degradedServers.size() < SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MIN_DEGRADATION || degradedServers.size() > SERVER_KNOBS->CC_FAILOVER_DUE_TO_HEALTH_MAX_DEGRADATION) { return false; } // Do not trigger recovery if the cluster controller is excluded, since the master will change // anyways once the cluster controller is moved if (id_worker[clusterControllerProcessId].priorityInfo.isExcluded) { return false; } return transactionSystemContainsDegradedServers() && !remoteTransactionSystemContainsDegradedServers(); } int recentRecoveryCountDueToHealth() { while (!recentHealthTriggeredRecoveryTime.empty() && now() - recentHealthTriggeredRecoveryTime.front() > SERVER_KNOBS->CC_TRACKING_HEALTH_RECOVERY_INTERVAL) { recentHealthTriggeredRecoveryTime.pop(); } return recentHealthTriggeredRecoveryTime.size(); } bool isExcludedDegradedServer(const NetworkAddressList& a) { for (const auto& server : excludedDegradedServers) { if (a.contains(server)) return true; } return false; } std::map>, WorkerInfo> id_worker; std::map>, ProcessClass> id_class; // contains the mapping from process id to process class from the database RangeResult lastProcessClasses; bool gotProcessClasses; bool gotFullyRecoveredConfig; Optional> masterProcessId; Optional> clusterControllerProcessId; Optional> clusterControllerDcId; AsyncVar>>> desiredDcIds; // desired DC priorities AsyncVar>>>> changingDcIds; // current DC priorities to change first, and whether that is the cluster controller AsyncVar>>>> changedDcIds; // current DC priorities to change second, and whether the cluster controller has been changed UID id; std::vector outstandingRecruitmentRequests; std::vector outstandingRemoteRecruitmentRequests; std::vector> outstandingStorageRequests; std::vector> outstandingBlobWorkerRequests; ActorCollection ac; UpdateWorkerList updateWorkerList; Future outstandingRequestChecker; Future outstandingRemoteRequestChecker; AsyncTrigger updateDBInfo; std::set updateDBInfoEndpoints; std::set removedDBInfoEndpoints; DBInfo db; Database cx; double startTime; Future goodRecruitmentTime; Future goodRemoteRecruitmentTime; Version datacenterVersionDifference; PromiseStream> addActor; bool versionDifferenceUpdated; bool remoteDCMonitorStarted; bool remoteTransactionSystemDegraded; // recruitX is used to signal when role X needs to be (re)recruited. // recruitingXID is used to track the ID of X's interface which is being recruited. // We use AsyncVars to kill (i.e. halt) singletons that have been replaced. AsyncVar recruitDistributor; Optional recruitingDistributorID; AsyncVar recruitRatekeeper; Optional recruitingRatekeeperID; AsyncVar recruitBlobManager; Optional recruitingBlobManagerID; // Stores the health information from a particular worker's perspective. struct WorkerHealth { struct DegradedTimes { double startTime = 0; double lastRefreshTime = 0; }; std::unordered_map degradedPeers; // TODO(zhewu): Include disk and CPU signals. }; std::unordered_map workerHealth; std::unordered_set degradedServers; // The servers that the cluster controller is considered as degraded. The servers in this list // are not excluded unless they are added to `excludedDegradedServers`. std::unordered_set excludedDegradedServers; // The degraded servers to be excluded when assigning workers to roles. std::queue recentHealthTriggeredRecoveryTime; CounterCollection clusterControllerMetrics; Counter openDatabaseRequests; Counter registerWorkerRequests; Counter getWorkersRequests; Counter getClientWorkersRequests; Counter registerMasterRequests; Counter statusRequests; Reference recruitedMasterWorkerEventHolder; ClusterControllerData(ClusterControllerFullInterface const& ccInterface, LocalityData const& locality, ServerCoordinators const& coordinators) : gotProcessClasses(false), gotFullyRecoveredConfig(false), clusterControllerProcessId(locality.processId()), clusterControllerDcId(locality.dcId()), id(ccInterface.id()), ac(false), outstandingRequestChecker(Void()), outstandingRemoteRequestChecker(Void()), startTime(now()), goodRecruitmentTime(Never()), goodRemoteRecruitmentTime(Never()), datacenterVersionDifference(0), versionDifferenceUpdated(false), remoteDCMonitorStarted(false), remoteTransactionSystemDegraded(false), recruitDistributor(false), recruitRatekeeper(false), recruitBlobManager(false), clusterControllerMetrics("ClusterController", id.toString()), openDatabaseRequests("OpenDatabaseRequests", clusterControllerMetrics), registerWorkerRequests("RegisterWorkerRequests", clusterControllerMetrics), getWorkersRequests("GetWorkersRequests", clusterControllerMetrics), getClientWorkersRequests("GetClientWorkersRequests", clusterControllerMetrics), registerMasterRequests("RegisterMasterRequests", clusterControllerMetrics), statusRequests("StatusRequests", clusterControllerMetrics), recruitedMasterWorkerEventHolder(makeReference("RecruitedMasterWorker")) { auto serverInfo = ServerDBInfo(); serverInfo.id = deterministicRandom()->randomUniqueID(); serverInfo.infoGeneration = ++db.dbInfoCount; serverInfo.masterLifetime.ccID = id; serverInfo.clusterInterface = ccInterface; serverInfo.myLocality = locality; db.serverInfo->set(serverInfo); cx = openDBOnServer(db.serverInfo, TaskPriority::DefaultEndpoint, LockAware::True); } ~ClusterControllerData() { ac.clear(false); id_worker.clear(); } }; // Wrapper for singleton interfaces template struct Singleton { const Optional& interface; Singleton(const Optional& interface) : interface(interface) {} virtual Role getRole() const = 0; virtual ProcessClass::ClusterRole getClusterRole() const = 0; virtual void setInterfaceToDbInfo(ClusterControllerData* cc) const = 0; virtual void halt(ClusterControllerData* cc, Optional> pid) const = 0; virtual void recruit(ClusterControllerData* cc) const = 0; }; struct RatekeeperSingleton : Singleton { RatekeeperSingleton(const Optional& interface) : Singleton(interface) {} Role getRole() const { return Role::RATEKEEPER; } ProcessClass::ClusterRole getClusterRole() const { return ProcessClass::Ratekeeper; } void setInterfaceToDbInfo(ClusterControllerData* cc) const { if (interface.present()) { cc->db.setRatekeeper(interface.get()); } } void halt(ClusterControllerData* cc, Optional> pid) const { if (interface.present()) { cc->id_worker[pid].haltRatekeeper = brokenPromiseToNever(interface.get().haltRatekeeper.getReply(HaltRatekeeperRequest(cc->id))); } } void recruit(ClusterControllerData* cc) const { cc->recruitRatekeeper.set(true); } }; struct DataDistributorSingleton : Singleton { DataDistributorSingleton(const Optional& interface) : Singleton(interface) {} Role getRole() const { return Role::DATA_DISTRIBUTOR; } ProcessClass::ClusterRole getClusterRole() const { return ProcessClass::DataDistributor; } void setInterfaceToDbInfo(ClusterControllerData* cc) const { if (interface.present()) { cc->db.setDistributor(interface.get()); } } void halt(ClusterControllerData* cc, Optional> pid) const { if (interface.present()) { cc->id_worker[pid].haltDistributor = brokenPromiseToNever(interface.get().haltDataDistributor.getReply(HaltDataDistributorRequest(cc->id))); } } void recruit(ClusterControllerData* cc) const { cc->recruitDistributor.set(true); } }; struct BlobManagerSingleton : Singleton { BlobManagerSingleton(const Optional& interface) : Singleton(interface) {} Role getRole() const { return Role::BLOB_MANAGER; } ProcessClass::ClusterRole getClusterRole() const { return ProcessClass::BlobManager; } void setInterfaceToDbInfo(ClusterControllerData* cc) const { if (interface.present()) { cc->db.setBlobManager(interface.get()); } } void halt(ClusterControllerData* cc, Optional> pid) const { if (interface.present()) { cc->id_worker[pid].haltBlobManager = brokenPromiseToNever(interface.get().haltBlobManager.getReply(HaltBlobManagerRequest(cc->id))); } } void recruit(ClusterControllerData* cc) const { cc->recruitBlobManager.set(true); } }; ACTOR Future clusterWatchDatabase(ClusterControllerData* cluster, ClusterControllerData::DBInfo* db) { state MasterInterface iMaster; // SOMEDAY: If there is already a non-failed master referenced by zkMasterInfo, use that one until it fails // When this someday is implemented, make sure forced failures still cause the master to be recruited again loop { TraceEvent("CCWDB", cluster->id).log(); try { state double recoveryStart = now(); TraceEvent("CCWDB", cluster->id).detail("Recruiting", "Master"); // We must recruit the master in the same data center as the cluster controller. // This should always be possible, because we can recruit the master on the same process as the cluster // controller. std::map>, int> id_used; id_used[cluster->clusterControllerProcessId]++; state WorkerFitnessInfo masterWorker = cluster->getWorkerForRoleInDatacenter( cluster->clusterControllerDcId, ProcessClass::Master, ProcessClass::NeverAssign, db->config, id_used); if ((masterWorker.worker.processClass.machineClassFitness(ProcessClass::Master) > SERVER_KNOBS->EXPECTED_MASTER_FITNESS || masterWorker.worker.interf.locality.processId() == cluster->clusterControllerProcessId) && !cluster->goodRecruitmentTime.isReady()) { TraceEvent("CCWDB", cluster->id) .detail("Fitness", masterWorker.worker.processClass.machineClassFitness(ProcessClass::Master)); wait(delay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); continue; } RecruitMasterRequest rmq; rmq.lifetime = db->serverInfo->get().masterLifetime; rmq.forceRecovery = db->forceRecovery; cluster->masterProcessId = masterWorker.worker.interf.locality.processId(); cluster->db.unfinishedRecoveries++; state Future> fNewMaster = masterWorker.worker.interf.master.tryGetReply(rmq); wait(ready(fNewMaster) || db->forceMasterFailure.onTrigger()); if (fNewMaster.isReady() && fNewMaster.get().present()) { TraceEvent("CCWDB", cluster->id).detail("Recruited", fNewMaster.get().get().id()); // for status tool TraceEvent("RecruitedMasterWorker", cluster->id) .detail("Address", fNewMaster.get().get().address()) .trackLatest(cluster->recruitedMasterWorkerEventHolder->trackingKey); iMaster = fNewMaster.get().get(); db->masterRegistrationCount = 0; db->recoveryStalled = false; auto dbInfo = ServerDBInfo(); dbInfo.master = iMaster; dbInfo.id = deterministicRandom()->randomUniqueID(); dbInfo.infoGeneration = ++db->dbInfoCount; dbInfo.masterLifetime = db->serverInfo->get().masterLifetime; ++dbInfo.masterLifetime; dbInfo.clusterInterface = db->serverInfo->get().clusterInterface; dbInfo.distributor = db->serverInfo->get().distributor; dbInfo.ratekeeper = db->serverInfo->get().ratekeeper; dbInfo.blobManager = db->serverInfo->get().blobManager; dbInfo.latencyBandConfig = db->serverInfo->get().latencyBandConfig; TraceEvent("CCWDB", cluster->id) .detail("Lifetime", dbInfo.masterLifetime.toString()) .detail("ChangeID", dbInfo.id); db->serverInfo->set(dbInfo); state Future spinDelay = delay( SERVER_KNOBS ->MASTER_SPIN_DELAY); // Don't retry master recovery more than once per second, but don't delay // the "first" recovery after more than a second of normal operation TraceEvent("CCWDB", cluster->id).detail("Watching", iMaster.id()); // Master failure detection is pretty sensitive, but if we are in the middle of a very long recovery we // really don't want to have to start over loop choose { when(wait(waitFailureClient( iMaster.waitFailure, db->masterRegistrationCount ? SERVER_KNOBS->MASTER_FAILURE_REACTION_TIME : (now() - recoveryStart) * SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY, db->masterRegistrationCount ? -SERVER_KNOBS->MASTER_FAILURE_REACTION_TIME / SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY : SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY) || db->forceMasterFailure.onTrigger())) { break; } when(wait(db->serverInfo->onChange())) {} } wait(spinDelay); TEST(true); // clusterWatchDatabase() master failed TraceEvent(SevWarn, "DetectedFailedMaster", cluster->id).detail("OldMaster", iMaster.id()); } else { TEST(true); // clusterWatchDatabas() !newMaster.present() wait(delay(SERVER_KNOBS->MASTER_SPIN_DELAY)); } } catch (Error& e) { TraceEvent("CCWDB", cluster->id).error(e, true).detail("Master", iMaster.id()); if (e.code() == error_code_actor_cancelled) throw; bool ok = e.code() == error_code_no_more_servers; TraceEvent(ok ? SevWarn : SevError, "ClusterWatchDatabaseRetrying", cluster->id).error(e); if (!ok) throw e; wait(delay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } } ACTOR Future clusterGetServerInfo(ClusterControllerData::DBInfo* db, UID knownServerInfoID, ReplyPromise reply) { while (db->serverInfo->get().id == knownServerInfoID) { choose { when(wait(yieldedFuture(db->serverInfo->onChange()))) {} when(wait(delayJittered(300))) { break; } // The server might be long gone! } } reply.send(db->serverInfo->get()); return Void(); } ACTOR Future clusterOpenDatabase(ClusterControllerData::DBInfo* db, OpenDatabaseRequest req) { db->clientStatus[req.reply.getEndpoint().getPrimaryAddress()] = std::make_pair(now(), req); if (db->clientStatus.size() > 10000) { TraceEvent(SevWarnAlways, "TooManyClientStatusEntries").suppressFor(1.0); } while (db->clientInfo->get().id == req.knownClientInfoID) { choose { when(wait(db->clientInfo->onChange())) {} when(wait(delayJittered(SERVER_KNOBS->COORDINATOR_REGISTER_INTERVAL))) { break; } // The client might be long gone! } } req.reply.send(db->clientInfo->get()); return Void(); } void checkOutstandingRecruitmentRequests(ClusterControllerData* self) { for (int i = 0; i < self->outstandingRecruitmentRequests.size(); i++) { RecruitFromConfigurationRequest& req = self->outstandingRecruitmentRequests[i]; try { RecruitFromConfigurationReply rep = self->findWorkersForConfiguration(req); req.reply.send(rep); swapAndPop(&self->outstandingRecruitmentRequests, i--); } catch (Error& e) { if (e.code() == error_code_no_more_servers || e.code() == error_code_operation_failed) { TraceEvent(SevWarn, "RecruitTLogMatchingSetNotAvailable", self->id).error(e); } else { TraceEvent(SevError, "RecruitTLogsRequestError", self->id).error(e); throw; } } } } void checkOutstandingRemoteRecruitmentRequests(ClusterControllerData* self) { for (int i = 0; i < self->outstandingRemoteRecruitmentRequests.size(); i++) { RecruitRemoteFromConfigurationRequest& req = self->outstandingRemoteRecruitmentRequests[i]; try { RecruitRemoteFromConfigurationReply rep = self->findRemoteWorkersForConfiguration(req); req.reply.send(rep); swapAndPop(&self->outstandingRemoteRecruitmentRequests, i--); } catch (Error& e) { if (e.code() == error_code_no_more_servers || e.code() == error_code_operation_failed) { TraceEvent(SevWarn, "RecruitRemoteTLogMatchingSetNotAvailable", self->id).error(e); } else { TraceEvent(SevError, "RecruitRemoteTLogsRequestError", self->id).error(e); throw; } } } } void checkOutstandingStorageRequests(ClusterControllerData* self) { for (int i = 0; i < self->outstandingStorageRequests.size(); i++) { auto& req = self->outstandingStorageRequests[i]; try { if (req.second < now()) { req.first.reply.sendError(timed_out()); swapAndPop(&self->outstandingStorageRequests, i--); } else { if (!self->gotProcessClasses && !req.first.criticalRecruitment) throw no_more_servers(); auto worker = self->getStorageWorker(req.first); RecruitStorageReply rep; rep.worker = worker.interf; rep.processClass = worker.processClass; req.first.reply.send(rep); swapAndPop(&self->outstandingStorageRequests, i--); } } catch (Error& e) { if (e.code() == error_code_no_more_servers) { TraceEvent(SevWarn, "RecruitStorageNotAvailable", self->id) .suppressFor(1.0) .detail("OutstandingReq", i) .detail("IsCriticalRecruitment", req.first.criticalRecruitment) .error(e); } else { TraceEvent(SevError, "RecruitStorageError", self->id).error(e); throw; } } } } // When workers aren't available at the time of request, the request // gets added to a list of outstanding reqs. Here, we try to resolve these // outstanding requests. void checkOutstandingBlobWorkerRequests(ClusterControllerData* self) { for (int i = 0; i < self->outstandingBlobWorkerRequests.size(); i++) { auto& req = self->outstandingBlobWorkerRequests[i]; try { if (req.second < now()) { req.first.reply.sendError(timed_out()); swapAndPop(&self->outstandingBlobWorkerRequests, i--); } else { if (!self->gotProcessClasses) throw no_more_servers(); auto worker = self->getBlobWorker(req.first); RecruitBlobWorkerReply rep; rep.worker = worker.interf; rep.processClass = worker.processClass; req.first.reply.send(rep); // can remove it once we know the worker was found swapAndPop(&self->outstandingBlobWorkerRequests, i--); } } catch (Error& e) { if (e.code() == error_code_no_more_servers) { TraceEvent(SevWarn, "RecruitBlobWorkerNotAvailable", self->id) .suppressFor(1.0) .detail("OutstandingReq", i) .error(e); } else { TraceEvent(SevError, "RecruitBlobWorkerError", self->id).error(e); throw; } } } } // Finds and returns a new process for role WorkerDetails findNewProcessForSingleton(ClusterControllerData* self, const ProcessClass::ClusterRole role, std::map>, int>& id_used) { // find new process in cluster for role WorkerDetails newWorker = self->getWorkerForRoleInDatacenter( self->clusterControllerDcId, role, ProcessClass::NeverAssign, self->db.config, id_used, {}, true) .worker; // check if master's process is actually better suited for role if (self->onMasterIsBetter(newWorker, role)) { newWorker = self->id_worker[self->masterProcessId.get()].details; } // acknowledge that the pid is now potentially used by this role as well id_used[newWorker.interf.locality.processId()]++; return newWorker; } // Return best possible fitness for singleton. Note that lower fitness is better. ProcessClass::Fitness findBestFitnessForSingleton(const ClusterControllerData* self, const WorkerDetails& worker, const ProcessClass::ClusterRole& role) { auto bestFitness = worker.processClass.machineClassFitness(role); // If the process has been marked as excluded, we take the max with ExcludeFit to ensure its fit // is at least as bad as ExcludeFit. This assists with successfully offboarding such processes // and removing them from the cluster. if (self->db.config.isExcludedServer(worker.interf.addresses())) { bestFitness = std::max(bestFitness, ProcessClass::ExcludeFit); } return bestFitness; } // Returns true iff the singleton is healthy. "Healthy" here means that // the singleton is stable (see below) and doesn't need to be rerecruited. // Side effects: (possibly) initiates recruitment template bool isHealthySingleton(ClusterControllerData* self, const WorkerDetails& newWorker, const Singleton& singleton, const ProcessClass::Fitness& bestFitness, const Optional recruitingID) { // A singleton is stable if it exists in cluster, has not been killed off of proc and is not being recruited bool isStableSingleton = singleton.interface.present() && self->id_worker.count(singleton.interface.get().locality.processId()) && (!recruitingID.present() || (recruitingID.get() == singleton.interface.get().id())); if (!isStableSingleton) { return false; // not healthy because unstable } auto& currWorker = self->id_worker[singleton.interface.get().locality.processId()]; auto currFitness = currWorker.details.processClass.machineClassFitness(singleton.getClusterRole()); if (currWorker.priorityInfo.isExcluded) { currFitness = ProcessClass::ExcludeFit; } // If any of the following conditions are met, we will switch the singleton's process: // - if the current proc is used by some non-master, non-singleton role // - if the current fitness is less than optimal (lower fitness is better) // - if currently at peak fitness but on same process as master, and the new worker is on different process bool shouldRerecruit = self->isUsedNotMaster(currWorker.details.interf.locality.processId()) || bestFitness < currFitness || (currFitness == bestFitness && currWorker.details.interf.locality.processId() == self->masterProcessId && newWorker.interf.locality.processId() != self->masterProcessId); if (shouldRerecruit) { std::string roleAbbr = singleton.getRole().abbreviation; TraceEvent(("CCHalt" + roleAbbr).c_str(), self->id) .detail(roleAbbr + "ID", singleton.interface.get().id()) .detail("Excluded", currWorker.priorityInfo.isExcluded) .detail("Fitness", currFitness) .detail("BestFitness", bestFitness); singleton.recruit(self); // SIDE EFFECT: initiating recruitment return false; // not healthy since needed to be rerecruited } else { return true; // healthy because doesn't need to be rerecruited } } // Returns a mapping from pid->pidCount for pids std::map>, int> getColocCounts( const std::vector>>& pids) { std::map>, int> counts; for (const auto& pid : pids) { if (pid.present()) { ++counts[pid]; } } return counts; } // Checks if there exists a better process for each singleton (e.g. DD) compared // to the process it is currently on. // Note: there is a lot of extra logic here to only recruit the blob manager when gate is open. // When adding new singletons, just follow the ratekeeper/data distributor examples. void checkBetterSingletons(ClusterControllerData* self) { if (!self->masterProcessId.present() || self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { return; } // note: this map doesn't consider pids used by existing singletons std::map>, int> id_used = self->getUsedIds(); // We prefer spreading out other roles more than separating singletons on their own process // so we artificially amplify the pid count for the processes used by non-singleton roles. // In other words, we make the processes used for other roles less desirable to be used // by singletons as well. for (auto& it : id_used) { it.second *= PID_USED_AMP_FOR_NON_SINGLETON; } // Try to find a new process for each singleton. WorkerDetails newRKWorker = findNewProcessForSingleton(self, ProcessClass::Ratekeeper, id_used); WorkerDetails newDDWorker = findNewProcessForSingleton(self, ProcessClass::DataDistributor, id_used); WorkerDetails newBMWorker; if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { newBMWorker = findNewProcessForSingleton(self, ProcessClass::BlobManager, id_used); } // Find best possible fitnesses for each singleton. auto bestFitnessForRK = findBestFitnessForSingleton(self, newRKWorker, ProcessClass::Ratekeeper); auto bestFitnessForDD = findBestFitnessForSingleton(self, newDDWorker, ProcessClass::DataDistributor); ProcessClass::Fitness bestFitnessForBM; if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { bestFitnessForBM = findBestFitnessForSingleton(self, newBMWorker, ProcessClass::BlobManager); } auto& db = self->db.serverInfo->get(); auto rkSingleton = RatekeeperSingleton(db.ratekeeper); auto ddSingleton = DataDistributorSingleton(db.distributor); BlobManagerSingleton bmSingleton(db.blobManager); // Check if the singletons are healthy. // side effect: try to rerecruit the singletons to more optimal processes bool rkHealthy = isHealthySingleton( self, newRKWorker, rkSingleton, bestFitnessForRK, self->recruitingRatekeeperID); bool ddHealthy = isHealthySingleton( self, newDDWorker, ddSingleton, bestFitnessForDD, self->recruitingDistributorID); bool bmHealthy = true; if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { bmHealthy = isHealthySingleton( self, newBMWorker, bmSingleton, bestFitnessForBM, self->recruitingBlobManagerID); } // if any of the singletons are unhealthy (rerecruited or not stable), then do not // consider any further re-recruitments if (!(rkHealthy && ddHealthy && bmHealthy)) { return; } // if we reach here, we know that the singletons are healthy so let's // check if we can colocate the singletons in a more optimal way Optional> currRKProcessId = rkSingleton.interface.get().locality.processId(); Optional> currDDProcessId = ddSingleton.interface.get().locality.processId(); Optional> newRKProcessId = newRKWorker.interf.locality.processId(); Optional> newDDProcessId = newDDWorker.interf.locality.processId(); Optional> currBMProcessId, newBMProcessId; if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { currBMProcessId = bmSingleton.interface.get().locality.processId(); newBMProcessId = newBMWorker.interf.locality.processId(); } std::vector>> currPids = { currRKProcessId, currDDProcessId }; std::vector>> newPids = { newRKProcessId, newDDProcessId }; if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { currPids.emplace_back(currBMProcessId); newPids.emplace_back(newBMProcessId); } auto currColocMap = getColocCounts(currPids); auto newColocMap = getColocCounts(newPids); // if the knob is disabled, the BM coloc counts should have no affect on the coloc counts check below if (!CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { ASSERT(currColocMap[currBMProcessId] == 0); ASSERT(newColocMap[newBMProcessId] == 0); } // if the new coloc counts are collectively better (i.e. each singleton's coloc count has not increased) if (newColocMap[newRKProcessId] <= currColocMap[currRKProcessId] && newColocMap[newDDProcessId] <= currColocMap[currDDProcessId] && newColocMap[newBMProcessId] <= currColocMap[currBMProcessId]) { // rerecruit the singleton for which we have found a better process, if any if (newColocMap[newRKProcessId] < currColocMap[currRKProcessId]) { rkSingleton.recruit(self); } else if (newColocMap[newDDProcessId] < currColocMap[currDDProcessId]) { ddSingleton.recruit(self); } else if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES && newColocMap[newBMProcessId] < currColocMap[currBMProcessId]) { bmSingleton.recruit(self); } } } ACTOR Future doCheckOutstandingRequests(ClusterControllerData* self) { try { wait(delay(SERVER_KNOBS->CHECK_OUTSTANDING_INTERVAL)); while (!self->goodRecruitmentTime.isReady()) { wait(self->goodRecruitmentTime); } checkOutstandingRecruitmentRequests(self); checkOutstandingStorageRequests(self); if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { checkOutstandingBlobWorkerRequests(self); } checkBetterSingletons(self); self->checkRecoveryStalled(); if (self->betterMasterExists()) { self->db.forceMasterFailure.trigger(); TraceEvent("MasterRegistrationKill", self->id).detail("MasterId", self->db.serverInfo->get().master.id()); } } catch (Error& e) { if (e.code() != error_code_no_more_servers) { TraceEvent(SevError, "CheckOutstandingError").error(e); } } return Void(); } ACTOR Future doCheckOutstandingRemoteRequests(ClusterControllerData* self) { try { wait(delay(SERVER_KNOBS->CHECK_OUTSTANDING_INTERVAL)); while (!self->goodRemoteRecruitmentTime.isReady()) { wait(self->goodRemoteRecruitmentTime); } checkOutstandingRemoteRecruitmentRequests(self); } catch (Error& e) { if (e.code() != error_code_no_more_servers) { TraceEvent(SevError, "CheckOutstandingError").error(e); } } return Void(); } void checkOutstandingRequests(ClusterControllerData* self) { if (self->outstandingRemoteRequestChecker.isReady()) { self->outstandingRemoteRequestChecker = doCheckOutstandingRemoteRequests(self); } if (self->outstandingRequestChecker.isReady()) { self->outstandingRequestChecker = doCheckOutstandingRequests(self); } } ACTOR Future rebootAndCheck(ClusterControllerData* cluster, Optional> processID) { { auto watcher = cluster->id_worker.find(processID); ASSERT(watcher != cluster->id_worker.end()); watcher->second.reboots++; wait(delay(g_network->isSimulated() ? SERVER_KNOBS->SIM_SHUTDOWN_TIMEOUT : SERVER_KNOBS->SHUTDOWN_TIMEOUT)); } { auto watcher = cluster->id_worker.find(processID); if (watcher != cluster->id_worker.end()) { watcher->second.reboots--; if (watcher->second.reboots < 2) checkOutstandingRequests(cluster); } } return Void(); } ACTOR Future workerAvailabilityWatch(WorkerInterface worker, ProcessClass startingClass, ClusterControllerData* cluster) { state Future failed = (worker.address() == g_network->getLocalAddress() || startingClass.classType() == ProcessClass::TesterClass) ? Never() : waitFailureClient(worker.waitFailure, SERVER_KNOBS->WORKER_FAILURE_TIME); cluster->updateWorkerList.set(worker.locality.processId(), ProcessData(worker.locality, startingClass, worker.stableAddress())); cluster->updateDBInfoEndpoints.insert(worker.updateServerDBInfo.getEndpoint()); cluster->updateDBInfo.trigger(); // This switching avoids a race where the worker can be added to id_worker map after the workerAvailabilityWatch // fails for the worker. wait(delay(0)); loop { choose { when(wait(IFailureMonitor::failureMonitor().onStateEqual( worker.storage.getEndpoint(), FailureStatus( IFailureMonitor::failureMonitor().getState(worker.storage.getEndpoint()).isAvailable())))) { if (IFailureMonitor::failureMonitor().getState(worker.storage.getEndpoint()).isAvailable()) { cluster->ac.add(rebootAndCheck(cluster, worker.locality.processId())); checkOutstandingRequests(cluster); } } when(wait(failed)) { // remove workers that have failed WorkerInfo& failedWorkerInfo = cluster->id_worker[worker.locality.processId()]; if (!failedWorkerInfo.reply.isSet()) { failedWorkerInfo.reply.send( RegisterWorkerReply(failedWorkerInfo.details.processClass, failedWorkerInfo.priorityInfo)); } if (worker.locality.processId() == cluster->masterProcessId) { cluster->masterProcessId = Optional(); } TraceEvent("ClusterControllerWorkerFailed", cluster->id) .detail("ProcessId", worker.locality.processId()) .detail("ProcessClass", failedWorkerInfo.details.processClass.toString()) .detail("Address", worker.address()); cluster->removedDBInfoEndpoints.insert(worker.updateServerDBInfo.getEndpoint()); cluster->id_worker.erase(worker.locality.processId()); cluster->updateWorkerList.set(worker.locality.processId(), Optional()); return Void(); } } } } struct FailureStatusInfo { FailureStatus status; double lastRequestTime; double penultimateRequestTime; FailureStatusInfo() : lastRequestTime(0), penultimateRequestTime(0) {} void insertRequest(double now) { penultimateRequestTime = lastRequestTime; lastRequestTime = now; } double latency(double now) const { return std::max(now - lastRequestTime, lastRequestTime - penultimateRequestTime); } }; ACTOR Future> requireAll(std::vector>>> in) { state std::vector out; state int i; for (i = 0; i < in.size(); i++) { Optional> x = wait(in[i]); if (!x.present()) throw recruitment_failed(); out.insert(out.end(), x.get().begin(), x.get().end()); } return out; } void clusterRecruitStorage(ClusterControllerData* self, RecruitStorageRequest req) { try { if (!self->gotProcessClasses && !req.criticalRecruitment) throw no_more_servers(); auto worker = self->getStorageWorker(req); RecruitStorageReply rep; rep.worker = worker.interf; rep.processClass = worker.processClass; req.reply.send(rep); } catch (Error& e) { if (e.code() == error_code_no_more_servers) { self->outstandingStorageRequests.push_back(std::make_pair(req, now() + SERVER_KNOBS->RECRUITMENT_TIMEOUT)); TraceEvent(SevWarn, "RecruitStorageNotAvailable", self->id) .detail("IsCriticalRecruitment", req.criticalRecruitment) .error(e); } else { TraceEvent(SevError, "RecruitStorageError", self->id).error(e); throw; // Any other error will bring down the cluster controller } } } // Trys to send a reply to req with a worker (process) that a blob worker can be recruited on // Otherwise, add the req to a list of outstanding reqs that will eventually be dealt with void clusterRecruitBlobWorker(ClusterControllerData* self, RecruitBlobWorkerRequest req) { try { if (!self->gotProcessClasses) throw no_more_servers(); auto worker = self->getBlobWorker(req); RecruitBlobWorkerReply rep; rep.worker = worker.interf; rep.processClass = worker.processClass; req.reply.send(rep); } catch (Error& e) { if (e.code() == error_code_no_more_servers) { self->outstandingBlobWorkerRequests.push_back( std::make_pair(req, now() + SERVER_KNOBS->RECRUITMENT_TIMEOUT)); TraceEvent(SevWarn, "RecruitBlobWorkerNotAvailable", self->id).error(e); } else { TraceEvent(SevError, "RecruitBlobWorkerError", self->id).error(e); throw; // Any other error will bring down the cluster controller } } } ACTOR Future clusterRecruitFromConfiguration(ClusterControllerData* self, RecruitFromConfigurationRequest req) { // At the moment this doesn't really need to be an actor (it always completes immediately) TEST(true); // ClusterController RecruitTLogsRequest loop { try { auto rep = self->findWorkersForConfiguration(req); req.reply.send(rep); return Void(); } catch (Error& e) { if (e.code() == error_code_no_more_servers && self->goodRecruitmentTime.isReady()) { self->outstandingRecruitmentRequests.push_back(req); TraceEvent(SevWarn, "RecruitFromConfigurationNotAvailable", self->id).error(e); return Void(); } else if (e.code() == error_code_operation_failed || e.code() == error_code_no_more_servers) { // recruitment not good enough, try again TraceEvent("RecruitFromConfigurationRetry", self->id) .error(e) .detail("GoodRecruitmentTimeReady", self->goodRecruitmentTime.isReady()); while (!self->goodRecruitmentTime.isReady()) { wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } else { TraceEvent(SevError, "RecruitFromConfigurationError", self->id).error(e); throw; // goodbye, cluster controller } } wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } ACTOR Future clusterRecruitRemoteFromConfiguration(ClusterControllerData* self, RecruitRemoteFromConfigurationRequest req) { // At the moment this doesn't really need to be an actor (it always completes immediately) TEST(true); // ClusterController RecruitTLogsRequest Remote loop { try { RecruitRemoteFromConfigurationReply rep = self->findRemoteWorkersForConfiguration(req); req.reply.send(rep); return Void(); } catch (Error& e) { if (e.code() == error_code_no_more_servers && self->goodRemoteRecruitmentTime.isReady()) { self->outstandingRemoteRecruitmentRequests.push_back(req); TraceEvent(SevWarn, "RecruitRemoteFromConfigurationNotAvailable", self->id).error(e); return Void(); } else if (e.code() == error_code_operation_failed || e.code() == error_code_no_more_servers) { // recruitment not good enough, try again TraceEvent("RecruitRemoteFromConfigurationRetry", self->id) .error(e) .detail("GoodRecruitmentTimeReady", self->goodRemoteRecruitmentTime.isReady()); while (!self->goodRemoteRecruitmentTime.isReady()) { wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } else { TraceEvent(SevError, "RecruitRemoteFromConfigurationError", self->id).error(e); throw; // goodbye, cluster controller } } wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } void clusterRegisterMaster(ClusterControllerData* self, RegisterMasterRequest const& req) { req.reply.send(Void()); TraceEvent("MasterRegistrationReceived", self->id) .detail("MasterId", req.id) .detail("Master", req.mi.toString()) .detail("Tlogs", describe(req.logSystemConfig.tLogs)) .detail("Resolvers", req.resolvers.size()) .detail("RecoveryState", (int)req.recoveryState) .detail("RegistrationCount", req.registrationCount) .detail("CommitProxies", req.commitProxies.size()) .detail("GrvProxies", req.grvProxies.size()) .detail("RecoveryCount", req.recoveryCount) .detail("Stalled", req.recoveryStalled) .detail("OldestBackupEpoch", req.logSystemConfig.oldestBackupEpoch); // make sure the request comes from an active database auto db = &self->db; if (db->serverInfo->get().master.id() != req.id || req.registrationCount <= db->masterRegistrationCount) { TraceEvent("MasterRegistrationNotFound", self->id) .detail("MasterId", req.id) .detail("ExistingId", db->serverInfo->get().master.id()) .detail("RegCount", req.registrationCount) .detail("ExistingRegCount", db->masterRegistrationCount); return; } if (req.recoveryState == RecoveryState::FULLY_RECOVERED) { self->db.unfinishedRecoveries = 0; self->db.logGenerations = 0; ASSERT(!req.logSystemConfig.oldTLogs.size()); } else { self->db.logGenerations = std::max(self->db.logGenerations, req.logSystemConfig.oldTLogs.size()); } db->masterRegistrationCount = req.registrationCount; db->recoveryStalled = req.recoveryStalled; if (req.configuration.present()) { db->config = req.configuration.get(); if (req.recoveryState >= RecoveryState::ACCEPTING_COMMITS) { self->gotFullyRecoveredConfig = true; db->fullyRecoveredConfig = req.configuration.get(); for (auto& it : self->id_worker) { bool isExcludedFromConfig = db->fullyRecoveredConfig.isExcludedServer(it.second.details.interf.addresses()); if (it.second.priorityInfo.isExcluded != isExcludedFromConfig) { it.second.priorityInfo.isExcluded = isExcludedFromConfig; if (!it.second.reply.isSet()) { it.second.reply.send( RegisterWorkerReply(it.second.details.processClass, it.second.priorityInfo)); } } } } } bool isChanged = false; auto dbInfo = self->db.serverInfo->get(); if (dbInfo.recoveryState != req.recoveryState) { dbInfo.recoveryState = req.recoveryState; isChanged = true; } if (dbInfo.priorCommittedLogServers != req.priorCommittedLogServers) { dbInfo.priorCommittedLogServers = req.priorCommittedLogServers; isChanged = true; } // Construct the client information if (db->clientInfo->get().commitProxies != req.commitProxies || db->clientInfo->get().grvProxies != req.grvProxies) { isChanged = true; // TODO why construct a new one and not just copy the old one and change proxies + id? ClientDBInfo clientInfo; clientInfo.id = deterministicRandom()->randomUniqueID(); clientInfo.commitProxies = req.commitProxies; clientInfo.grvProxies = req.grvProxies; db->clientInfo->set(clientInfo); dbInfo.client = db->clientInfo->get(); } if (!dbInfo.logSystemConfig.isEqual(req.logSystemConfig)) { isChanged = true; dbInfo.logSystemConfig = req.logSystemConfig; } if (dbInfo.resolvers != req.resolvers) { isChanged = true; dbInfo.resolvers = req.resolvers; } if (dbInfo.recoveryCount != req.recoveryCount) { isChanged = true; dbInfo.recoveryCount = req.recoveryCount; } if (isChanged) { dbInfo.id = deterministicRandom()->randomUniqueID(); dbInfo.infoGeneration = ++self->db.dbInfoCount; self->db.serverInfo->set(dbInfo); } checkOutstandingRequests(self); } // Halts the registering (i.e. requesting) singleton if one is already in the process of being recruited // or, halts the existing singleton in favour of the requesting one template void haltRegisteringOrCurrentSingleton(ClusterControllerData* self, const WorkerInterface& worker, const Singleton& currSingleton, const Singleton& registeringSingleton, const Optional recruitingID) { ASSERT(currSingleton.getRole() == registeringSingleton.getRole()); const UID registeringID = registeringSingleton.interface.get().id(); const std::string roleName = currSingleton.getRole().roleName; const std::string roleAbbr = currSingleton.getRole().abbreviation; // halt the requesting singleton if it isn't the one currently being recruited if ((recruitingID.present() && recruitingID.get() != registeringID) || self->clusterControllerDcId != worker.locality.dcId()) { TraceEvent(("CCHaltRegistering" + roleName).c_str(), self->id) .detail(roleAbbr + "ID", registeringID) .detail("DcID", printable(self->clusterControllerDcId)) .detail("ReqDcID", printable(worker.locality.dcId())) .detail("Recruiting" + roleAbbr + "ID", recruitingID.present() ? recruitingID.get() : UID()); registeringSingleton.halt(self, worker.locality.processId()); } else if (!recruitingID.present()) { // if not currently recruiting, then halt previous one in favour of requesting one TraceEvent(("CCRegister" + roleName).c_str(), self->id).detail(roleAbbr + "ID", registeringID); if (currSingleton.interface.present() && currSingleton.interface.get().id() != registeringID && self->id_worker.count(currSingleton.interface.get().locality.processId())) { TraceEvent(("CCHaltPrevious" + roleName).c_str(), self->id) .detail(roleAbbr + "ID", currSingleton.interface.get().id()) .detail("DcID", printable(self->clusterControllerDcId)) .detail("ReqDcID", printable(worker.locality.dcId())) .detail("Recruiting" + roleAbbr + "ID", recruitingID.present() ? recruitingID.get() : UID()); currSingleton.halt(self, currSingleton.interface.get().locality.processId()); } // set the curr singleton if it doesn't exist or its different from the requesting one if (!currSingleton.interface.present() || currSingleton.interface.get().id() != registeringID) { registeringSingleton.setInterfaceToDbInfo(self); } } } void registerWorker(RegisterWorkerRequest req, ClusterControllerData* self, ConfigBroadcaster* configBroadcaster) { const WorkerInterface& w = req.wi; ProcessClass newProcessClass = req.processClass; auto info = self->id_worker.find(w.locality.processId()); ClusterControllerPriorityInfo newPriorityInfo = req.priorityInfo; newPriorityInfo.processClassFitness = newProcessClass.machineClassFitness(ProcessClass::ClusterController); for (auto it : req.incompatiblePeers) { self->db.incompatibleConnections[it] = now() + SERVER_KNOBS->INCOMPATIBLE_PEERS_LOGGING_INTERVAL; } self->removedDBInfoEndpoints.erase(w.updateServerDBInfo.getEndpoint()); if (info == self->id_worker.end()) { TraceEvent("ClusterControllerActualWorkers", self->id) .detail("WorkerId", w.id()) .detail("ProcessId", w.locality.processId()) .detail("ZoneId", w.locality.zoneId()) .detail("DataHall", w.locality.dataHallId()) .detail("PClass", req.processClass.toString()) .detail("Workers", self->id_worker.size()); self->goodRecruitmentTime = lowPriorityDelay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY); self->goodRemoteRecruitmentTime = lowPriorityDelay(SERVER_KNOBS->WAIT_FOR_GOOD_REMOTE_RECRUITMENT_DELAY); } else { TraceEvent("ClusterControllerWorkerAlreadyRegistered", self->id) .suppressFor(1.0) .detail("WorkerId", w.id()) .detail("ProcessId", w.locality.processId()) .detail("ZoneId", w.locality.zoneId()) .detail("DataHall", w.locality.dataHallId()) .detail("PClass", req.processClass.toString()) .detail("Workers", self->id_worker.size()) .detail("Degraded", req.degraded); } if (w.address() == g_network->getLocalAddress()) { if (self->changingDcIds.get().first) { if (self->changingDcIds.get().second.present()) { newPriorityInfo.dcFitness = ClusterControllerPriorityInfo::calculateDCFitness( w.locality.dcId(), self->changingDcIds.get().second.get()); } } else if (self->changedDcIds.get().second.present()) { newPriorityInfo.dcFitness = ClusterControllerPriorityInfo::calculateDCFitness( w.locality.dcId(), self->changedDcIds.get().second.get()); } } else { if (!self->changingDcIds.get().first) { if (self->changingDcIds.get().second.present()) { newPriorityInfo.dcFitness = ClusterControllerPriorityInfo::calculateDCFitness( w.locality.dcId(), self->changingDcIds.get().second.get()); } } else if (self->changedDcIds.get().second.present()) { newPriorityInfo.dcFitness = ClusterControllerPriorityInfo::calculateDCFitness( w.locality.dcId(), self->changedDcIds.get().second.get()); } } // Check process class and exclusive property if (info == self->id_worker.end() || info->second.details.interf.id() != w.id() || req.generation >= info->second.gen) { if (self->gotProcessClasses) { auto classIter = self->id_class.find(w.locality.processId()); if (classIter != self->id_class.end() && (classIter->second.classSource() == ProcessClass::DBSource || req.initialClass.classType() == ProcessClass::UnsetClass)) { newProcessClass = classIter->second; } else { newProcessClass = req.initialClass; } newPriorityInfo.processClassFitness = newProcessClass.machineClassFitness(ProcessClass::ClusterController); } if (self->gotFullyRecoveredConfig) { newPriorityInfo.isExcluded = self->db.fullyRecoveredConfig.isExcludedServer(w.addresses()); } } if (info == self->id_worker.end()) { self->id_worker[w.locality.processId()] = WorkerInfo(workerAvailabilityWatch(w, newProcessClass, self), req.reply, req.generation, w, req.initialClass, newProcessClass, newPriorityInfo, req.degraded, req.issues); if (!self->masterProcessId.present() && w.locality.processId() == self->db.serverInfo->get().master.locality.processId()) { self->masterProcessId = w.locality.processId(); } if (configBroadcaster != nullptr) { self->addActor.send(configBroadcaster->registerWorker( req.lastSeenKnobVersion, req.knobConfigClassSet, self->id_worker[w.locality.processId()].watcher, self->id_worker[w.locality.processId()].details.interf.configBroadcastInterface)); } checkOutstandingRequests(self); } else if (info->second.details.interf.id() != w.id() || req.generation >= info->second.gen) { if (!info->second.reply.isSet()) { info->second.reply.send(Never()); } info->second.reply = req.reply; info->second.details.processClass = newProcessClass; info->second.priorityInfo = newPriorityInfo; info->second.initialClass = req.initialClass; info->second.details.degraded = req.degraded; info->second.gen = req.generation; info->second.issues = req.issues; if (info->second.details.interf.id() != w.id()) { self->removedDBInfoEndpoints.insert(info->second.details.interf.updateServerDBInfo.getEndpoint()); info->second.details.interf = w; info->second.watcher = workerAvailabilityWatch(w, newProcessClass, self); } if (configBroadcaster != nullptr) { self->addActor.send( configBroadcaster->registerWorker(req.lastSeenKnobVersion, req.knobConfigClassSet, info->second.watcher, info->second.details.interf.configBroadcastInterface)); } checkOutstandingRequests(self); } else { TEST(true); // Received an old worker registration request. } // For each singleton // - if the registering singleton conflicts with the singleton being recruited, kill the registering one // - if the singleton is not being recruited, kill the existing one in favour of the registering one if (req.distributorInterf.present()) { auto currSingleton = DataDistributorSingleton(self->db.serverInfo->get().distributor); auto registeringSingleton = DataDistributorSingleton(req.distributorInterf); haltRegisteringOrCurrentSingleton( self, w, currSingleton, registeringSingleton, self->recruitingDistributorID); } if (req.ratekeeperInterf.present()) { auto currSingleton = RatekeeperSingleton(self->db.serverInfo->get().ratekeeper); auto registeringSingleton = RatekeeperSingleton(req.ratekeeperInterf); haltRegisteringOrCurrentSingleton( self, w, currSingleton, registeringSingleton, self->recruitingRatekeeperID); } if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES && req.blobManagerInterf.present()) { auto currSingleton = BlobManagerSingleton(self->db.serverInfo->get().blobManager); auto registeringSingleton = BlobManagerSingleton(req.blobManagerInterf); haltRegisteringOrCurrentSingleton( self, w, currSingleton, registeringSingleton, self->recruitingBlobManagerID); } // Notify the worker to register again with new process class/exclusive property if (!req.reply.isSet() && newPriorityInfo != req.priorityInfo) { req.reply.send(RegisterWorkerReply(newProcessClass, newPriorityInfo)); } } #define TIME_KEEPER_VERSION LiteralStringRef("1") ACTOR Future timeKeeperSetVersion(ClusterControllerData* self) { state Reference tr = makeReference(self->cx); loop { try { tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); tr->setOption(FDBTransactionOptions::LOCK_AWARE); tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); tr->set(timeKeeperVersionKey, TIME_KEEPER_VERSION); wait(tr->commit()); break; } catch (Error& e) { wait(tr->onError(e)); } } return Void(); } // This actor periodically gets read version and writes it to cluster with current timestamp as key. To avoid // running out of space, it limits the max number of entries and clears old entries on each update. This mapping is // used from backup and restore to get the version information for a timestamp. ACTOR Future timeKeeper(ClusterControllerData* self) { state KeyBackedMap versionMap(timeKeeperPrefixRange.begin); TraceEvent("TimeKeeperStarted").log(); wait(timeKeeperSetVersion(self)); loop { state Reference tr = makeReference(self->cx); loop { try { state UID debugID = deterministicRandom()->randomUniqueID(); if (!g_network->isSimulated()) { // This is done to provide an arbitrary logged transaction every ~10s. // FIXME: replace or augment this with logging on the proxy which tracks // how long it is taking to hear responses from each other component. tr->debugTransaction(debugID); } tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); tr->setOption(FDBTransactionOptions::LOCK_AWARE); tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); Optional disableValue = wait(tr->get(timeKeeperDisableKey)); if (disableValue.present()) { break; } Version v = tr->getReadVersion().get(); int64_t currentTime = (int64_t)now(); versionMap.set(tr, currentTime, v); if (!g_network->isSimulated()) { TraceEvent("TimeKeeperCommit", debugID).detail("Version", v); } int64_t ttl = currentTime - SERVER_KNOBS->TIME_KEEPER_DELAY * SERVER_KNOBS->TIME_KEEPER_MAX_ENTRIES; if (ttl > 0) { versionMap.erase(tr, 0, ttl); } wait(tr->commit()); break; } catch (Error& e) { wait(tr->onError(e)); } } wait(delay(SERVER_KNOBS->TIME_KEEPER_DELAY)); } } ACTOR Future statusServer(FutureStream requests, ClusterControllerData* self, ServerCoordinators coordinators, ConfigBroadcaster const* configBroadcaster) { // Seconds since the END of the last GetStatus executed state double last_request_time = 0.0; // Place to accumulate a batch of requests to respond to state std::vector requests_batch; loop { try { // Wait til first request is ready StatusRequest req = waitNext(requests); ++self->statusRequests; requests_batch.push_back(req); // Earliest time at which we may begin a new request double next_allowed_request_time = last_request_time + SERVER_KNOBS->STATUS_MIN_TIME_BETWEEN_REQUESTS; // Wait if needed to satisfy min_time knob, also allows more requets to queue up. double minwait = std::max(next_allowed_request_time - now(), 0.0); wait(delay(minwait)); // Get all requests that are ready right *now*, before GetStatus() begins. // All of these requests will be responded to with the next GetStatus() result. // If requests are batched, do not respond to more than MAX_STATUS_REQUESTS_PER_SECOND // requests per second while (requests.isReady()) { auto req = requests.pop(); if (SERVER_KNOBS->STATUS_MIN_TIME_BETWEEN_REQUESTS > 0.0 && requests_batch.size() + 1 > SERVER_KNOBS->STATUS_MIN_TIME_BETWEEN_REQUESTS * SERVER_KNOBS->MAX_STATUS_REQUESTS_PER_SECOND) { TraceEvent(SevWarnAlways, "TooManyStatusRequests") .suppressFor(1.0) .detail("BatchSize", requests_batch.size()); req.reply.sendError(server_overloaded()); } else { requests_batch.push_back(req); } } // Get status but trap errors to send back to client. std::vector workers; std::vector workerIssues; for (auto& it : self->id_worker) { workers.push_back(it.second.details); if (it.second.issues.size()) { workerIssues.push_back(ProcessIssues(it.second.details.interf.address(), it.second.issues)); } } std::vector incompatibleConnections; for (auto it = self->db.incompatibleConnections.begin(); it != self->db.incompatibleConnections.end();) { if (it->second < now()) { it = self->db.incompatibleConnections.erase(it); } else { incompatibleConnections.push_back(it->first); it++; } } state ErrorOr result = wait(errorOr(clusterGetStatus(self->db.serverInfo, self->cx, workers, workerIssues, &self->db.clientStatus, coordinators, incompatibleConnections, self->datacenterVersionDifference, configBroadcaster))); if (result.isError() && result.getError().code() == error_code_actor_cancelled) throw result.getError(); // Update last_request_time now because GetStatus is finished and the delay is to be measured between // requests last_request_time = now(); while (!requests_batch.empty()) { if (result.isError()) requests_batch.back().reply.sendError(result.getError()); else requests_batch.back().reply.send(result.get()); requests_batch.pop_back(); wait(yield()); } } catch (Error& e) { TraceEvent(SevError, "StatusServerError").error(e); throw e; } } } ACTOR Future monitorProcessClasses(ClusterControllerData* self) { state ReadYourWritesTransaction trVer(self->db.db); loop { try { trVer.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); trVer.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); Optional val = wait(trVer.get(processClassVersionKey)); if (val.present()) break; RangeResult processClasses = wait(trVer.getRange(processClassKeys, CLIENT_KNOBS->TOO_MANY)); ASSERT(!processClasses.more && processClasses.size() < CLIENT_KNOBS->TOO_MANY); trVer.clear(processClassKeys); trVer.set(processClassVersionKey, processClassVersionValue); for (auto it : processClasses) { UID processUid = decodeProcessClassKeyOld(it.key); trVer.set(processClassKeyFor(processUid.toString()), it.value); } wait(trVer.commit()); TraceEvent("ProcessClassUpgrade").log(); break; } catch (Error& e) { wait(trVer.onError(e)); } } loop { state ReadYourWritesTransaction tr(self->db.db); loop { try { tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); RangeResult processClasses = wait(tr.getRange(processClassKeys, CLIENT_KNOBS->TOO_MANY)); ASSERT(!processClasses.more && processClasses.size() < CLIENT_KNOBS->TOO_MANY); if (processClasses != self->lastProcessClasses || !self->gotProcessClasses) { self->id_class.clear(); for (int i = 0; i < processClasses.size(); i++) { auto c = decodeProcessClassValue(processClasses[i].value); ASSERT(c.classSource() != ProcessClass::CommandLineSource); self->id_class[decodeProcessClassKey(processClasses[i].key)] = c; } for (auto& w : self->id_worker) { auto classIter = self->id_class.find(w.first); ProcessClass newProcessClass; if (classIter != self->id_class.end() && (classIter->second.classSource() == ProcessClass::DBSource || w.second.initialClass.classType() == ProcessClass::UnsetClass)) { newProcessClass = classIter->second; } else { newProcessClass = w.second.initialClass; } if (newProcessClass != w.second.details.processClass) { w.second.details.processClass = newProcessClass; w.second.priorityInfo.processClassFitness = newProcessClass.machineClassFitness(ProcessClass::ClusterController); if (!w.second.reply.isSet()) { w.second.reply.send( RegisterWorkerReply(w.second.details.processClass, w.second.priorityInfo)); } } } self->lastProcessClasses = processClasses; self->gotProcessClasses = true; checkOutstandingRequests(self); } state Future watchFuture = tr.watch(processClassChangeKey); wait(tr.commit()); wait(watchFuture); break; } catch (Error& e) { wait(tr.onError(e)); } } } } ACTOR Future monitorServerInfoConfig(ClusterControllerData::DBInfo* db) { loop { state ReadYourWritesTransaction tr(db->db); loop { try { tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS); tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE); Optional configVal = wait(tr.get(latencyBandConfigKey)); Optional config; if (configVal.present()) { config = LatencyBandConfig::parse(configVal.get()); } auto serverInfo = db->serverInfo->get(); if (config != serverInfo.latencyBandConfig) { TraceEvent("LatencyBandConfigChanged").detail("Present", config.present()); serverInfo.id = deterministicRandom()->randomUniqueID(); serverInfo.infoGeneration = ++db->dbInfoCount; serverInfo.latencyBandConfig = config; db->serverInfo->set(serverInfo); } state Future configChangeFuture = tr.watch(latencyBandConfigKey); wait(tr.commit()); wait(configChangeFuture); break; } catch (Error& e) { wait(tr.onError(e)); } } } } // Monitors the global configuration version key for changes. When changes are // made, the global configuration history is read and any updates are sent to // all processes in the system by updating the ClientDBInfo object. The // GlobalConfig actor class contains the functionality to read the latest // history and update the processes local view. ACTOR Future monitorGlobalConfig(ClusterControllerData::DBInfo* db) { loop { state ReadYourWritesTransaction tr(db->db); loop { try { tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); state Optional globalConfigVersion = wait(tr.get(globalConfigVersionKey)); state ClientDBInfo clientInfo = db->serverInfo->get().client; if (globalConfigVersion.present()) { // Since the history keys end with versionstamps, they // should be sorted correctly (versionstamps are stored in // big-endian order). RangeResult globalConfigHistory = wait(tr.getRange(globalConfigHistoryKeys, CLIENT_KNOBS->TOO_MANY)); // If the global configuration version key has been set, // the history should contain at least one item. ASSERT(globalConfigHistory.size() > 0); clientInfo.history.clear(); for (const auto& kv : globalConfigHistory) { ObjectReader reader(kv.value.begin(), IncludeVersion()); if (reader.protocolVersion() != g_network->protocolVersion()) { // If the protocol version has changed, the // GlobalConfig actor should refresh its view by // reading the entire global configuration key // range. Setting the version to the max int64_t // will always cause the global configuration // updater to refresh its view of the configuration // keyspace. clientInfo.history.clear(); clientInfo.history.emplace_back(std::numeric_limits::max()); break; } VersionHistory vh; reader.deserialize(vh); // Read commit version out of versionstamp at end of key. BinaryReader versionReader = BinaryReader(kv.key.removePrefix(globalConfigHistoryPrefix), Unversioned()); Version historyCommitVersion; versionReader >> historyCommitVersion; historyCommitVersion = bigEndian64(historyCommitVersion); vh.version = historyCommitVersion; clientInfo.history.push_back(std::move(vh)); } if (clientInfo.history.size() > 0) { // The first item in the historical list of mutations // is only used to: // a) Recognize that some historical changes may have // been missed, and the entire global // configuration keyspace needs to be read, or.. // b) Check which historical updates have already // been applied. If this is the case, the first // history item must have a version greater than // or equal to whatever version the global // configuration was last updated at, and // therefore won't need to be applied again. clientInfo.history[0].mutations = Standalone>(); } clientInfo.id = deterministicRandom()->randomUniqueID(); // Update ServerDBInfo so fdbserver processes receive updated history. ServerDBInfo serverInfo = db->serverInfo->get(); serverInfo.id = deterministicRandom()->randomUniqueID(); serverInfo.infoGeneration = ++db->dbInfoCount; serverInfo.client = clientInfo; db->serverInfo->set(serverInfo); // Update ClientDBInfo so client processes receive updated history. db->clientInfo->set(clientInfo); } state Future globalConfigFuture = tr.watch(globalConfigVersionKey); wait(tr.commit()); wait(globalConfigFuture); break; } catch (Error& e) { wait(tr.onError(e)); } } } } ACTOR Future updatedChangingDatacenters(ClusterControllerData* self) { // do not change the cluster controller until all the processes have had a chance to register wait(delay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY)); loop { state Future onChange = self->desiredDcIds.onChange(); if (!self->desiredDcIds.get().present()) { self->changingDcIds.set(std::make_pair(false, self->desiredDcIds.get())); } else { auto& worker = self->id_worker[self->clusterControllerProcessId]; uint8_t newFitness = ClusterControllerPriorityInfo::calculateDCFitness( worker.details.interf.locality.dcId(), self->desiredDcIds.get().get()); self->changingDcIds.set( std::make_pair(worker.priorityInfo.dcFitness > newFitness, self->desiredDcIds.get())); TraceEvent("UpdateChangingDatacenter", self->id) .detail("OldFitness", worker.priorityInfo.dcFitness) .detail("NewFitness", newFitness); if (worker.priorityInfo.dcFitness > newFitness) { worker.priorityInfo.dcFitness = newFitness; if (!worker.reply.isSet()) { worker.reply.send(RegisterWorkerReply(worker.details.processClass, worker.priorityInfo)); } } else { state int currentFit = ProcessClass::BestFit; while (currentFit <= ProcessClass::NeverAssign) { bool updated = false; for (auto& it : self->id_worker) { if ((!it.second.priorityInfo.isExcluded && it.second.priorityInfo.processClassFitness == currentFit) || currentFit == ProcessClass::NeverAssign) { uint8_t fitness = ClusterControllerPriorityInfo::calculateDCFitness( it.second.details.interf.locality.dcId(), self->changingDcIds.get().second.get()); if (it.first != self->clusterControllerProcessId && it.second.priorityInfo.dcFitness != fitness) { updated = true; it.second.priorityInfo.dcFitness = fitness; if (!it.second.reply.isSet()) { it.second.reply.send( RegisterWorkerReply(it.second.details.processClass, it.second.priorityInfo)); } } } } if (updated && currentFit < ProcessClass::NeverAssign) { wait(delay(SERVER_KNOBS->CC_CLASS_DELAY)); } currentFit++; } } } wait(onChange); } } ACTOR Future updatedChangedDatacenters(ClusterControllerData* self) { state Future changeDelay = delay(SERVER_KNOBS->CC_CHANGE_DELAY); state Future onChange = self->changingDcIds.onChange(); loop { choose { when(wait(onChange)) { changeDelay = delay(SERVER_KNOBS->CC_CHANGE_DELAY); onChange = self->changingDcIds.onChange(); } when(wait(changeDelay)) { changeDelay = Never(); onChange = self->changingDcIds.onChange(); self->changedDcIds.set(self->changingDcIds.get()); if (self->changedDcIds.get().second.present()) { TraceEvent("UpdateChangedDatacenter", self->id).detail("CCFirst", self->changedDcIds.get().first); if (!self->changedDcIds.get().first) { auto& worker = self->id_worker[self->clusterControllerProcessId]; uint8_t newFitness = ClusterControllerPriorityInfo::calculateDCFitness( worker.details.interf.locality.dcId(), self->changedDcIds.get().second.get()); if (worker.priorityInfo.dcFitness != newFitness) { worker.priorityInfo.dcFitness = newFitness; if (!worker.reply.isSet()) { worker.reply.send( RegisterWorkerReply(worker.details.processClass, worker.priorityInfo)); } } } else { state int currentFit = ProcessClass::BestFit; while (currentFit <= ProcessClass::NeverAssign) { bool updated = false; for (auto& it : self->id_worker) { if ((!it.second.priorityInfo.isExcluded && it.second.priorityInfo.processClassFitness == currentFit) || currentFit == ProcessClass::NeverAssign) { uint8_t fitness = ClusterControllerPriorityInfo::calculateDCFitness( it.second.details.interf.locality.dcId(), self->changedDcIds.get().second.get()); if (it.first != self->clusterControllerProcessId && it.second.priorityInfo.dcFitness != fitness) { updated = true; it.second.priorityInfo.dcFitness = fitness; if (!it.second.reply.isSet()) { it.second.reply.send(RegisterWorkerReply(it.second.details.processClass, it.second.priorityInfo)); } } } } if (updated && currentFit < ProcessClass::NeverAssign) { wait(delay(SERVER_KNOBS->CC_CLASS_DELAY)); } currentFit++; } } } } } } } ACTOR Future updateDatacenterVersionDifference(ClusterControllerData* self) { state double lastLogTime = 0; loop { self->versionDifferenceUpdated = false; if (self->db.serverInfo->get().recoveryState >= RecoveryState::ACCEPTING_COMMITS && self->db.config.usableRegions == 1) { bool oldDifferenceTooLarge = !self->versionDifferenceUpdated || self->datacenterVersionDifference >= SERVER_KNOBS->MAX_VERSION_DIFFERENCE; self->versionDifferenceUpdated = true; self->datacenterVersionDifference = 0; if (oldDifferenceTooLarge) { checkOutstandingRequests(self); } wait(self->db.serverInfo->onChange()); continue; } state Optional primaryLog; state Optional remoteLog; if (self->db.serverInfo->get().recoveryState >= RecoveryState::ALL_LOGS_RECRUITED) { for (auto& logSet : self->db.serverInfo->get().logSystemConfig.tLogs) { if (logSet.isLocal && logSet.locality != tagLocalitySatellite) { for (auto& tLog : logSet.tLogs) { if (tLog.present()) { primaryLog = tLog.interf(); break; } } } if (!logSet.isLocal) { for (auto& tLog : logSet.tLogs) { if (tLog.present()) { remoteLog = tLog.interf(); break; } } } } } if (!primaryLog.present() || !remoteLog.present()) { wait(self->db.serverInfo->onChange()); continue; } state Future onChange = self->db.serverInfo->onChange(); loop { state Future primaryMetrics = brokenPromiseToNever(primaryLog.get().getQueuingMetrics.getReply(TLogQueuingMetricsRequest())); state Future remoteMetrics = brokenPromiseToNever(remoteLog.get().getQueuingMetrics.getReply(TLogQueuingMetricsRequest())); wait((success(primaryMetrics) && success(remoteMetrics)) || onChange); if (onChange.isReady()) { break; } if (primaryMetrics.get().v > 0 && remoteMetrics.get().v > 0) { bool oldDifferenceTooLarge = !self->versionDifferenceUpdated || self->datacenterVersionDifference >= SERVER_KNOBS->MAX_VERSION_DIFFERENCE; self->versionDifferenceUpdated = true; self->datacenterVersionDifference = primaryMetrics.get().v - remoteMetrics.get().v; if (oldDifferenceTooLarge && self->datacenterVersionDifference < SERVER_KNOBS->MAX_VERSION_DIFFERENCE) { checkOutstandingRequests(self); } if (now() - lastLogTime > SERVER_KNOBS->CLUSTER_CONTROLLER_LOGGING_DELAY) { lastLogTime = now(); TraceEvent("DatacenterVersionDifference", self->id) .detail("Difference", self->datacenterVersionDifference); } } wait(delay(SERVER_KNOBS->VERSION_LAG_METRIC_INTERVAL) || onChange); if (onChange.isReady()) { break; } } } } // A background actor that periodically checks remote DC health, and `checkOutstandingRequests` if remote DC // recovers. ACTOR Future updateRemoteDCHealth(ClusterControllerData* self) { // The purpose of the initial delay is to wait for the cluster to achieve a steady state before checking remote // DC health, since remote DC healthy may trigger a failover, and we don't want that to happen too frequently. wait(delay(SERVER_KNOBS->INITIAL_UPDATE_CROSS_DC_INFO_DELAY)); self->remoteDCMonitorStarted = true; // When the remote DC health just start, we may just recover from a health degradation. Check if we can failback // if we are currently in the remote DC in the database configuration. if (!self->remoteTransactionSystemDegraded) { checkOutstandingRequests(self); } loop { bool oldRemoteTransactionSystemDegraded = self->remoteTransactionSystemDegraded; self->remoteTransactionSystemDegraded = self->remoteTransactionSystemContainsDegradedServers(); if (oldRemoteTransactionSystemDegraded && !self->remoteTransactionSystemDegraded) { checkOutstandingRequests(self); } wait(delay(SERVER_KNOBS->CHECK_REMOTE_HEALTH_INTERVAL)); } } ACTOR Future doEmptyCommit(Database cx) { state Transaction tr(cx); loop { try { tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); tr.setOption(FDBTransactionOptions::LOCK_AWARE); tr.makeSelfConflicting(); wait(tr.commit()); return Void(); } catch (Error& e) { wait(tr.onError(e)); } } } ACTOR Future handleForcedRecoveries(ClusterControllerData* self, ClusterControllerFullInterface interf) { loop { state ForceRecoveryRequest req = waitNext(interf.clientInterface.forceRecovery.getFuture()); TraceEvent("ForcedRecoveryStart", self->id) .detail("ClusterControllerDcId", self->clusterControllerDcId) .detail("DcId", req.dcId.printable()); state Future fCommit = doEmptyCommit(self->cx); wait(fCommit || delay(SERVER_KNOBS->FORCE_RECOVERY_CHECK_DELAY)); if (!fCommit.isReady() || fCommit.isError()) { if (self->clusterControllerDcId != req.dcId) { std::vector> dcPriority; dcPriority.push_back(req.dcId); dcPriority.push_back(self->clusterControllerDcId); self->desiredDcIds.set(dcPriority); } else { self->db.forceRecovery = true; self->db.forceMasterFailure.trigger(); } wait(fCommit); } TraceEvent("ForcedRecoveryFinish", self->id).log(); self->db.forceRecovery = false; req.reply.send(Void()); } } ACTOR Future startDataDistributor(ClusterControllerData* self) { wait(delay(0.0)); // If master fails at the same time, give it a chance to clear master PID. TraceEvent("CCStartDataDistributor", self->id).log(); loop { try { state bool noDistributor = !self->db.serverInfo->get().distributor.present(); while (!self->masterProcessId.present() || self->masterProcessId != self->db.serverInfo->get().master.locality.processId() || self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange() || delay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY)); } if (noDistributor && self->db.serverInfo->get().distributor.present()) { // Existing distributor registers while waiting, so skip. return Void(); } std::map>, int> idUsed = self->getUsedIds(); WorkerFitnessInfo ddWorker = self->getWorkerForRoleInDatacenter(self->clusterControllerDcId, ProcessClass::DataDistributor, ProcessClass::NeverAssign, self->db.config, idUsed); InitializeDataDistributorRequest req(deterministicRandom()->randomUniqueID()); state WorkerDetails worker = ddWorker.worker; if (self->onMasterIsBetter(worker, ProcessClass::DataDistributor)) { worker = self->id_worker[self->masterProcessId.get()].details; } self->recruitingDistributorID = req.reqId; TraceEvent("CCRecruitDataDistributor", self->id) .detail("Addr", worker.interf.address()) .detail("DDID", req.reqId); ErrorOr ddInterf = wait(worker.interf.dataDistributor.getReplyUnlessFailedFor( req, SERVER_KNOBS->WAIT_FOR_DISTRIBUTOR_JOIN_DELAY, 0)); if (ddInterf.present()) { self->recruitDistributor.set(false); self->recruitingDistributorID = ddInterf.get().id(); const auto& distributor = self->db.serverInfo->get().distributor; TraceEvent("CCDataDistributorRecruited", self->id) .detail("Addr", worker.interf.address()) .detail("DDID", ddInterf.get().id()); if (distributor.present() && distributor.get().id() != ddInterf.get().id() && self->id_worker.count(distributor.get().locality.processId())) { TraceEvent("CCHaltDataDistributorAfterRecruit", self->id) .detail("DDID", distributor.get().id()) .detail("DcID", printable(self->clusterControllerDcId)); DataDistributorSingleton(distributor).halt(self, distributor.get().locality.processId()); } if (!distributor.present() || distributor.get().id() != ddInterf.get().id()) { self->db.setDistributor(ddInterf.get()); } checkOutstandingRequests(self); return Void(); } } catch (Error& e) { TraceEvent("CCDataDistributorRecruitError", self->id).error(e); if (e.code() != error_code_no_more_servers) { throw; } } wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } ACTOR Future monitorDataDistributor(ClusterControllerData* self) { while (self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange()); } loop { if (self->db.serverInfo->get().distributor.present() && !self->recruitDistributor.get()) { choose { when(wait(waitFailureClient(self->db.serverInfo->get().distributor.get().waitFailure, SERVER_KNOBS->DD_FAILURE_TIME))) { TraceEvent("CCDataDistributorDied", self->id) .detail("DDID", self->db.serverInfo->get().distributor.get().id()); self->db.clearInterf(ProcessClass::DataDistributorClass); } when(wait(self->recruitDistributor.onChange())) {} } } else { wait(startDataDistributor(self)); } } } ACTOR Future startRatekeeper(ClusterControllerData* self) { wait(delay(0.0)); // If master fails at the same time, give it a chance to clear master PID. TraceEvent("CCStartRatekeeper", self->id).log(); loop { try { state bool no_ratekeeper = !self->db.serverInfo->get().ratekeeper.present(); while (!self->masterProcessId.present() || self->masterProcessId != self->db.serverInfo->get().master.locality.processId() || self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange() || delay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY)); } if (no_ratekeeper && self->db.serverInfo->get().ratekeeper.present()) { // Existing ratekeeper registers while waiting, so skip. return Void(); } std::map>, int> id_used = self->getUsedIds(); WorkerFitnessInfo rkWorker = self->getWorkerForRoleInDatacenter(self->clusterControllerDcId, ProcessClass::Ratekeeper, ProcessClass::NeverAssign, self->db.config, id_used); InitializeRatekeeperRequest req(deterministicRandom()->randomUniqueID()); state WorkerDetails worker = rkWorker.worker; if (self->onMasterIsBetter(worker, ProcessClass::Ratekeeper)) { worker = self->id_worker[self->masterProcessId.get()].details; } self->recruitingRatekeeperID = req.reqId; TraceEvent("CCRecruitRatekeeper", self->id) .detail("Addr", worker.interf.address()) .detail("RKID", req.reqId); ErrorOr interf = wait( worker.interf.ratekeeper.getReplyUnlessFailedFor(req, SERVER_KNOBS->WAIT_FOR_RATEKEEPER_JOIN_DELAY, 0)); if (interf.present()) { self->recruitRatekeeper.set(false); self->recruitingRatekeeperID = interf.get().id(); const auto& ratekeeper = self->db.serverInfo->get().ratekeeper; TraceEvent("CCRatekeeperRecruited", self->id) .detail("Addr", worker.interf.address()) .detail("RKID", interf.get().id()); if (ratekeeper.present() && ratekeeper.get().id() != interf.get().id() && self->id_worker.count(ratekeeper.get().locality.processId())) { TraceEvent("CCHaltRatekeeperAfterRecruit", self->id) .detail("RKID", ratekeeper.get().id()) .detail("DcID", printable(self->clusterControllerDcId)); RatekeeperSingleton(ratekeeper).halt(self, ratekeeper.get().locality.processId()); } if (!ratekeeper.present() || ratekeeper.get().id() != interf.get().id()) { self->db.setRatekeeper(interf.get()); } checkOutstandingRequests(self); return Void(); } } catch (Error& e) { TraceEvent("CCRatekeeperRecruitError", self->id).error(e); if (e.code() != error_code_no_more_servers) { throw; } } wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } ACTOR Future monitorRatekeeper(ClusterControllerData* self) { while (self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange()); } loop { if (self->db.serverInfo->get().ratekeeper.present() && !self->recruitRatekeeper.get()) { choose { when(wait(waitFailureClient(self->db.serverInfo->get().ratekeeper.get().waitFailure, SERVER_KNOBS->RATEKEEPER_FAILURE_TIME))) { TraceEvent("CCRatekeeperDied", self->id) .detail("RKID", self->db.serverInfo->get().ratekeeper.get().id()); self->db.clearInterf(ProcessClass::RatekeeperClass); } when(wait(self->recruitRatekeeper.onChange())) {} } } else { wait(startRatekeeper(self)); } } } // Acquires the BM lock by getting the next epoch no. ACTOR Future getNextBMEpoch(ClusterControllerData* self) { state Reference tr = makeReference(self->cx); loop { tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS); tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); try { Optional oldEpoch = wait(tr->get(blobManagerEpochKey)); state int64_t newEpoch = oldEpoch.present() ? decodeBlobManagerEpochValue(oldEpoch.get()) + 1 : 1; tr->set(blobManagerEpochKey, blobManagerEpochValueFor(newEpoch)); wait(tr->commit()); return newEpoch; } catch (Error& e) { printf("Acquiring blob manager lock got error %s\n", e.name()); wait(tr->onError(e)); } } } ACTOR Future startBlobManager(ClusterControllerData* self) { wait(delay(0.0)); // If master fails at the same time, give it a chance to clear master PID. TraceEvent("CCStartBlobManager", self->id).log(); loop { try { state bool noBlobManager = !self->db.serverInfo->get().blobManager.present(); while (!self->masterProcessId.present() || self->masterProcessId != self->db.serverInfo->get().master.locality.processId() || self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange() || delay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY)); } if (noBlobManager && self->db.serverInfo->get().blobManager.present()) { // Existing blob manager registers while waiting, so skip. return Void(); } state std::map>, int> id_used = self->getUsedIds(); state WorkerFitnessInfo bmWorker = self->getWorkerForRoleInDatacenter(self->clusterControllerDcId, ProcessClass::BlobManager, ProcessClass::NeverAssign, self->db.config, id_used); int64_t nextEpoch = wait(getNextBMEpoch(self)); InitializeBlobManagerRequest req(deterministicRandom()->randomUniqueID(), nextEpoch); state WorkerDetails worker = bmWorker.worker; if (self->onMasterIsBetter(worker, ProcessClass::BlobManager)) { worker = self->id_worker[self->masterProcessId.get()].details; } self->recruitingBlobManagerID = req.reqId; TraceEvent("CCRecruitBlobManager", self->id) .detail("Addr", worker.interf.address()) .detail("BMID", req.reqId); ErrorOr interf = wait(worker.interf.blobManager.getReplyUnlessFailedFor( req, SERVER_KNOBS->WAIT_FOR_BLOB_MANAGER_JOIN_DELAY, 0)); if (interf.present()) { self->recruitBlobManager.set(false); self->recruitingBlobManagerID = interf.get().id(); const auto& blobManager = self->db.serverInfo->get().blobManager; TraceEvent("CCBlobManagerRecruited", self->id) .detail("Addr", worker.interf.address()) .detail("BMID", interf.get().id()); if (blobManager.present() && blobManager.get().id() != interf.get().id() && self->id_worker.count(blobManager.get().locality.processId())) { TraceEvent("CCHaltBlobManagerAfterRecruit", self->id) .detail("BMID", blobManager.get().id()) .detail("DcID", printable(self->clusterControllerDcId)); BlobManagerSingleton(blobManager).halt(self, blobManager.get().locality.processId()); } if (!blobManager.present() || blobManager.get().id() != interf.get().id()) { self->db.setBlobManager(interf.get()); } checkOutstandingRequests(self); return Void(); } } catch (Error& e) { TraceEvent("CCBlobManagerRecruitError", self->id).error(e); if (e.code() != error_code_no_more_servers) { throw; } } wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY)); } } ACTOR Future monitorBlobManager(ClusterControllerData* self) { while (self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) { wait(self->db.serverInfo->onChange()); } loop { if (self->db.serverInfo->get().blobManager.present() && !self->recruitBlobManager.get()) { choose { when(wait(waitFailureClient(self->db.serverInfo->get().blobManager.get().waitFailure, SERVER_KNOBS->BLOB_MANAGER_FAILURE_TIME))) { TraceEvent("CCBlobManagerDied", self->id) .detail("BMID", self->db.serverInfo->get().blobManager.get().id()); self->db.clearInterf(ProcessClass::BlobManagerClass); } when(wait(self->recruitBlobManager.onChange())) {} } } else { wait(startBlobManager(self)); } } } ACTOR Future dbInfoUpdater(ClusterControllerData* self) { state Future dbInfoChange = self->db.serverInfo->onChange(); state Future updateDBInfo = self->updateDBInfo.onTrigger(); loop { choose { when(wait(updateDBInfo)) { wait(delay(SERVER_KNOBS->DBINFO_BATCH_DELAY) || dbInfoChange); } when(wait(dbInfoChange)) {} } UpdateServerDBInfoRequest req; if (dbInfoChange.isReady()) { for (auto& it : self->id_worker) { req.broadcastInfo.push_back(it.second.details.interf.updateServerDBInfo.getEndpoint()); } } else { for (auto it : self->removedDBInfoEndpoints) { self->updateDBInfoEndpoints.erase(it); } req.broadcastInfo = std::vector(self->updateDBInfoEndpoints.begin(), self->updateDBInfoEndpoints.end()); } self->updateDBInfoEndpoints.clear(); self->removedDBInfoEndpoints.clear(); dbInfoChange = self->db.serverInfo->onChange(); updateDBInfo = self->updateDBInfo.onTrigger(); req.serializedDbInfo = BinaryWriter::toValue(self->db.serverInfo->get(), AssumeVersion(g_network->protocolVersion())); TraceEvent("DBInfoStartBroadcast", self->id).log(); choose { when(std::vector notUpdated = wait(broadcastDBInfoRequest(req, SERVER_KNOBS->DBINFO_SEND_AMOUNT, Optional(), false))) { TraceEvent("DBInfoFinishBroadcast", self->id).detail("NotUpdated", notUpdated.size()); if (notUpdated.size()) { self->updateDBInfoEndpoints.insert(notUpdated.begin(), notUpdated.end()); self->updateDBInfo.trigger(); } } when(wait(dbInfoChange)) {} } } } // The actor that periodically monitors the health of tracked workers. ACTOR Future workerHealthMonitor(ClusterControllerData* self) { loop { try { while (!self->goodRecruitmentTime.isReady()) { wait(lowPriorityDelay(SERVER_KNOBS->CC_WORKER_HEALTH_CHECKING_INTERVAL)); } self->degradedServers = self->getServersWithDegradedLink(); // Compare `self->degradedServers` with `self->excludedDegradedServers` and remove those that have // recovered. for (auto it = self->excludedDegradedServers.begin(); it != self->excludedDegradedServers.end();) { if (self->degradedServers.find(*it) == self->degradedServers.end()) { self->excludedDegradedServers.erase(it++); } else { ++it; } } if (!self->degradedServers.empty()) { std::string degradedServerString; for (const auto& server : self->degradedServers) { degradedServerString += server.toString() + " "; } TraceEvent("ClusterControllerHealthMonitor").detail("DegradedServers", degradedServerString); // Check if the cluster controller should trigger a recovery to exclude any degraded servers from // the transaction system. if (self->shouldTriggerRecoveryDueToDegradedServers()) { if (SERVER_KNOBS->CC_HEALTH_TRIGGER_RECOVERY) { if (self->recentRecoveryCountDueToHealth() < SERVER_KNOBS->CC_MAX_HEALTH_RECOVERY_COUNT) { self->recentHealthTriggeredRecoveryTime.push(now()); self->excludedDegradedServers = self->degradedServers; TraceEvent("DegradedServerDetectedAndTriggerRecovery") .detail("RecentRecoveryCountDueToHealth", self->recentRecoveryCountDueToHealth()); self->db.forceMasterFailure.trigger(); } } else { self->excludedDegradedServers.clear(); TraceEvent("DegradedServerDetectedAndSuggestRecovery").log(); } } else if (self->shouldTriggerFailoverDueToDegradedServers()) { double ccUpTime = now() - machineStartTime(); if (SERVER_KNOBS->CC_HEALTH_TRIGGER_FAILOVER && ccUpTime > SERVER_KNOBS->INITIAL_UPDATE_CROSS_DC_INFO_DELAY) { TraceEvent("DegradedServerDetectedAndTriggerFailover").log(); std::vector> dcPriority; auto remoteDcId = self->db.config.regions[0].dcId == self->clusterControllerDcId.get() ? self->db.config.regions[1].dcId : self->db.config.regions[0].dcId; // Switch the current primary DC and remote DC in desiredDcIds, so that the remote DC // becomes the new primary, and the primary DC becomes the new remote. dcPriority.push_back(remoteDcId); dcPriority.push_back(self->clusterControllerDcId); self->desiredDcIds.set(dcPriority); } else { TraceEvent("DegradedServerDetectedAndSuggestFailover").detail("CCUpTime", ccUpTime); } } } wait(delay(SERVER_KNOBS->CC_WORKER_HEALTH_CHECKING_INTERVAL)); } catch (Error& e) { TraceEvent(SevWarnAlways, "ClusterControllerHealthMonitorError").error(e); if (e.code() == error_code_actor_cancelled) { throw; } } } } ACTOR Future clusterControllerCore(ClusterControllerFullInterface interf, Future leaderFail, ServerCoordinators coordinators, LocalityData locality, ConfigDBType configDBType) { state ClusterControllerData self(interf, locality, coordinators); state ConfigBroadcaster configBroadcaster(coordinators, configDBType); state Future coordinationPingDelay = delay(SERVER_KNOBS->WORKER_COORDINATION_PING_DELAY); state uint64_t step = 0; state Future> error = errorOr(actorCollection(self.addActor.getFuture())); self.addActor.send(clusterWatchDatabase(&self, &self.db)); // Start the master database self.addActor.send(self.updateWorkerList.init(self.db.db)); self.addActor.send(statusServer(interf.clientInterface.databaseStatus.getFuture(), &self, coordinators, (configDBType == ConfigDBType::DISABLED) ? nullptr : &configBroadcaster)); self.addActor.send(timeKeeper(&self)); self.addActor.send(monitorProcessClasses(&self)); self.addActor.send(monitorServerInfoConfig(&self.db)); self.addActor.send(monitorGlobalConfig(&self.db)); self.addActor.send(updatedChangingDatacenters(&self)); self.addActor.send(updatedChangedDatacenters(&self)); self.addActor.send(updateDatacenterVersionDifference(&self)); self.addActor.send(handleForcedRecoveries(&self, interf)); self.addActor.send(monitorDataDistributor(&self)); self.addActor.send(monitorRatekeeper(&self)); if (CLIENT_KNOBS->ENABLE_BLOB_GRANULES) { self.addActor.send(monitorBlobManager(&self)); } // self.addActor.send(monitorTSSMapping(&self)); self.addActor.send(dbInfoUpdater(&self)); self.addActor.send(traceCounters("ClusterControllerMetrics", self.id, SERVER_KNOBS->STORAGE_LOGGING_DELAY, &self.clusterControllerMetrics, self.id.toString() + "/ClusterControllerMetrics")); self.addActor.send(traceRole(Role::CLUSTER_CONTROLLER, interf.id())); // printf("%s: I am the cluster controller\n", g_network->getLocalAddress().toString().c_str()); if (SERVER_KNOBS->CC_ENABLE_WORKER_HEALTH_MONITOR) { self.addActor.send(workerHealthMonitor(&self)); self.addActor.send(updateRemoteDCHealth(&self)); } loop choose { when(ErrorOr err = wait(error)) { if (err.isError()) { endRole(Role::CLUSTER_CONTROLLER, interf.id(), "Stop Received Error", false, err.getError()); } else { endRole(Role::CLUSTER_CONTROLLER, interf.id(), "Stop Received Signal", true); } // We shut down normally even if there was a serious error (so this fdbserver may be re-elected cluster // controller) return Void(); } when(OpenDatabaseRequest req = waitNext(interf.clientInterface.openDatabase.getFuture())) { ++self.openDatabaseRequests; self.addActor.send(clusterOpenDatabase(&self.db, req)); } when(RecruitFromConfigurationRequest req = waitNext(interf.recruitFromConfiguration.getFuture())) { self.addActor.send(clusterRecruitFromConfiguration(&self, req)); } when(RecruitRemoteFromConfigurationRequest req = waitNext(interf.recruitRemoteFromConfiguration.getFuture())) { self.addActor.send(clusterRecruitRemoteFromConfiguration(&self, req)); } when(RecruitStorageRequest req = waitNext(interf.recruitStorage.getFuture())) { clusterRecruitStorage(&self, req); } when(RecruitBlobWorkerRequest req = waitNext(interf.recruitBlobWorker.getFuture())) { clusterRecruitBlobWorker(&self, req); } when(RegisterWorkerRequest req = waitNext(interf.registerWorker.getFuture())) { ++self.registerWorkerRequests; registerWorker(req, &self, (configDBType == ConfigDBType::DISABLED) ? nullptr : &configBroadcaster); } when(GetWorkersRequest req = waitNext(interf.getWorkers.getFuture())) { ++self.getWorkersRequests; std::vector workers; for (auto const& [id, worker] : self.id_worker) { if ((req.flags & GetWorkersRequest::NON_EXCLUDED_PROCESSES_ONLY) && self.db.config.isExcludedServer(worker.details.interf.addresses())) { continue; } if ((req.flags & GetWorkersRequest::TESTER_CLASS_ONLY) && worker.details.processClass.classType() != ProcessClass::TesterClass) { continue; } workers.push_back(worker.details); } req.reply.send(workers); } when(GetClientWorkersRequest req = waitNext(interf.clientInterface.getClientWorkers.getFuture())) { ++self.getClientWorkersRequests; std::vector workers; for (auto& it : self.id_worker) { if (it.second.details.processClass.classType() != ProcessClass::TesterClass) { workers.push_back(it.second.details.interf.clientInterface); } } req.reply.send(workers); } when(wait(coordinationPingDelay)) { CoordinationPingMessage message(self.id, step++); for (auto& it : self.id_worker) it.second.details.interf.coordinationPing.send(message); coordinationPingDelay = delay(SERVER_KNOBS->WORKER_COORDINATION_PING_DELAY); TraceEvent("CoordinationPingSent", self.id).detail("TimeStep", message.timeStep); } when(RegisterMasterRequest req = waitNext(interf.registerMaster.getFuture())) { ++self.registerMasterRequests; clusterRegisterMaster(&self, req); } when(UpdateWorkerHealthRequest req = waitNext(interf.updateWorkerHealth.getFuture())) { if (SERVER_KNOBS->CC_ENABLE_WORKER_HEALTH_MONITOR) { self.updateWorkerHealth(req); } } when(GetServerDBInfoRequest req = waitNext(interf.getServerDBInfo.getFuture())) { self.addActor.send(clusterGetServerInfo(&self.db, req.knownServerInfoID, req.reply)); } when(wait(leaderFail)) { // We are no longer the leader if this has changed. endRole(Role::CLUSTER_CONTROLLER, interf.id(), "Leader Replaced", true); TEST(true); // Lost Cluster Controller Role return Void(); } when(ReplyPromise ping = waitNext(interf.clientInterface.ping.getFuture())) { ping.send(Void()); } } } ACTOR Future replaceInterface(ClusterControllerFullInterface interf) { loop { if (interf.hasMessage()) { wait(delay(SERVER_KNOBS->REPLACE_INTERFACE_DELAY)); return Void(); } wait(delay(SERVER_KNOBS->REPLACE_INTERFACE_CHECK_DELAY)); } } ACTOR Future clusterController(ServerCoordinators coordinators, Reference>> currentCC, bool hasConnected, Reference> asyncPriorityInfo, LocalityData locality, ConfigDBType configDBType) { loop { state ClusterControllerFullInterface cci; state bool inRole = false; cci.initEndpoints(); try { // Register as a possible leader; wait to be elected state Future leaderFail = tryBecomeLeader(coordinators, cci, currentCC, hasConnected, asyncPriorityInfo); state Future shouldReplace = replaceInterface(cci); while (!currentCC->get().present() || currentCC->get().get() != cci) { choose { when(wait(currentCC->onChange())) {} when(wait(leaderFail)) { ASSERT(false); throw internal_error(); } when(wait(shouldReplace)) { break; } } } if (!shouldReplace.isReady()) { shouldReplace = Future(); hasConnected = true; startRole(Role::CLUSTER_CONTROLLER, cci.id(), UID()); inRole = true; wait(clusterControllerCore(cci, leaderFail, coordinators, locality, configDBType)); } } catch (Error& e) { if (inRole) endRole(Role::CLUSTER_CONTROLLER, cci.id(), "Error", e.code() == error_code_actor_cancelled || e.code() == error_code_coordinators_changed, e); else TraceEvent(e.code() == error_code_coordinators_changed ? SevInfo : SevError, "ClusterControllerCandidateError", cci.id()) .error(e); throw; } } } ACTOR Future clusterController(Reference connFile, Reference>> currentCC, Reference> asyncPriorityInfo, Future recoveredDiskFiles, LocalityData locality, ConfigDBType configDBType) { wait(recoveredDiskFiles); state bool hasConnected = false; loop { try { ServerCoordinators coordinators(connFile); wait(clusterController(coordinators, currentCC, hasConnected, asyncPriorityInfo, locality, configDBType)); } catch (Error& e) { if (e.code() != error_code_coordinators_changed) throw; // Expected to terminate fdbserver } hasConnected = true; } } namespace { // Tests `ClusterControllerData::updateWorkerHealth()` can update `ClusterControllerData::workerHealth` based on // `UpdateWorkerHealth` request correctly. TEST_CASE("/fdbserver/clustercontroller/updateWorkerHealth") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. state ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); state NetworkAddress workerAddress(IPAddress(0x01010101), 1); state NetworkAddress badPeer1(IPAddress(0x02020202), 1); state NetworkAddress badPeer2(IPAddress(0x03030303), 1); state NetworkAddress badPeer3(IPAddress(0x04040404), 1); // Create a `UpdateWorkerHealthRequest` with two bad peers, and they should appear in the `workerAddress`'s // degradedPeers. { UpdateWorkerHealthRequest req; req.address = workerAddress; req.degradedPeers.push_back(badPeer1); req.degradedPeers.push_back(badPeer2); data.updateWorkerHealth(req); ASSERT(data.workerHealth.find(workerAddress) != data.workerHealth.end()); auto& health = data.workerHealth[workerAddress]; ASSERT_EQ(health.degradedPeers.size(), 2); ASSERT(health.degradedPeers.find(badPeer1) != health.degradedPeers.end()); ASSERT_EQ(health.degradedPeers[badPeer1].startTime, health.degradedPeers[badPeer1].lastRefreshTime); ASSERT(health.degradedPeers.find(badPeer2) != health.degradedPeers.end()); } // Create a `UpdateWorkerHealthRequest` with two bad peers, one from the previous test and a new one. // The one from the previous test should have lastRefreshTime updated. // The other one from the previous test not included in this test should be removed. { // Make the time to move so that now() guarantees to return a larger value than before. wait(delay(0.001)); UpdateWorkerHealthRequest req; req.address = workerAddress; req.degradedPeers.push_back(badPeer1); req.degradedPeers.push_back(badPeer3); data.updateWorkerHealth(req); ASSERT(data.workerHealth.find(workerAddress) != data.workerHealth.end()); auto& health = data.workerHealth[workerAddress]; ASSERT_EQ(health.degradedPeers.size(), 2); ASSERT(health.degradedPeers.find(badPeer1) != health.degradedPeers.end()); ASSERT_LT(health.degradedPeers[badPeer1].startTime, health.degradedPeers[badPeer1].lastRefreshTime); ASSERT(health.degradedPeers.find(badPeer2) == health.degradedPeers.end()); ASSERT(health.degradedPeers.find(badPeer3) != health.degradedPeers.end()); } // Create a `UpdateWorkerHealthRequest` with empty `degradedPeers`, which should remove the worker from // `workerHealth`. { UpdateWorkerHealthRequest req; req.address = workerAddress; data.updateWorkerHealth(req); ASSERT(data.workerHealth.find(workerAddress) == data.workerHealth.end()); } return Void(); } TEST_CASE("/fdbserver/clustercontroller/updateRecoveredWorkers") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); NetworkAddress worker1(IPAddress(0x01010101), 1); NetworkAddress worker2(IPAddress(0x11111111), 1); NetworkAddress badPeer1(IPAddress(0x02020202), 1); NetworkAddress badPeer2(IPAddress(0x03030303), 1); // Create following test scenario: // worker1 -> badPeer1 active // worker1 -> badPeer2 recovered // worker2 -> badPeer2 recovered data.workerHealth[worker1].degradedPeers[badPeer1] = { now() - SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL - 1, now() }; data.workerHealth[worker1].degradedPeers[badPeer2] = { now() - SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL - 1, now() - SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL - 1 }; data.workerHealth[worker2].degradedPeers[badPeer2] = { now() - SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL - 1, now() - SERVER_KNOBS->CC_DEGRADED_LINK_EXPIRATION_INTERVAL - 1 }; data.updateRecoveredWorkers(); ASSERT_EQ(data.workerHealth.size(), 1); ASSERT(data.workerHealth.find(worker1) != data.workerHealth.end()); ASSERT(data.workerHealth[worker1].degradedPeers.find(badPeer1) != data.workerHealth[worker1].degradedPeers.end()); ASSERT(data.workerHealth[worker1].degradedPeers.find(badPeer2) == data.workerHealth[worker1].degradedPeers.end()); ASSERT(data.workerHealth.find(worker2) == data.workerHealth.end()); return Void(); } TEST_CASE("/fdbserver/clustercontroller/getServersWithDegradedLink") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); NetworkAddress worker(IPAddress(0x01010101), 1); NetworkAddress badPeer1(IPAddress(0x02020202), 1); NetworkAddress badPeer2(IPAddress(0x03030303), 1); NetworkAddress badPeer3(IPAddress(0x04040404), 1); NetworkAddress badPeer4(IPAddress(0x05050505), 1); // Test that a reported degraded link should stay for sometime before being considered as a degraded link by // cluster controller. { data.workerHealth[worker].degradedPeers[badPeer1] = { now(), now() }; ASSERT(data.getServersWithDegradedLink().empty()); data.workerHealth.clear(); } // Test that when there is only one reported degraded link, getServersWithDegradedLink can return correct // degraded server. { data.workerHealth[worker].degradedPeers[badPeer1] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; auto degradedServers = data.getServersWithDegradedLink(); ASSERT(degradedServers.size() == 1); ASSERT(degradedServers.find(badPeer1) != degradedServers.end()); data.workerHealth.clear(); } // Test that if both A complains B and B compalins A, only one of the server will be chosen as degraded server. { data.workerHealth[worker].degradedPeers[badPeer1] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer1].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; auto degradedServers = data.getServersWithDegradedLink(); ASSERT(degradedServers.size() == 1); ASSERT(degradedServers.find(worker) != degradedServers.end() || degradedServers.find(badPeer1) != degradedServers.end()); data.workerHealth.clear(); } // Test that if B complains A and C complains A, A is selected as degraded server instead of B or C. { ASSERT(SERVER_KNOBS->CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE < 4); data.workerHealth[worker].degradedPeers[badPeer1] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer1].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[worker].degradedPeers[badPeer2] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer2].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; auto degradedServers = data.getServersWithDegradedLink(); ASSERT(degradedServers.size() == 1); ASSERT(degradedServers.find(worker) != degradedServers.end()); data.workerHealth.clear(); } // Test that if the number of complainers exceeds the threshold, no degraded server is returned. { ASSERT(SERVER_KNOBS->CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE < 4); data.workerHealth[badPeer1].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer2].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer3].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer4].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; ASSERT(data.getServersWithDegradedLink().empty()); data.workerHealth.clear(); } // Test that if the degradation is reported both ways between A and other 4 servers, no degraded server is // returned. { ASSERT(SERVER_KNOBS->CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE < 4); data.workerHealth[worker].degradedPeers[badPeer1] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer1].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[worker].degradedPeers[badPeer2] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer2].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[worker].degradedPeers[badPeer3] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer3].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[worker].degradedPeers[badPeer4] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; data.workerHealth[badPeer4].degradedPeers[worker] = { now() - SERVER_KNOBS->CC_MIN_DEGRADATION_INTERVAL - 1, now() }; ASSERT(data.getServersWithDegradedLink().empty()); data.workerHealth.clear(); } return Void(); } TEST_CASE("/fdbserver/clustercontroller/recentRecoveryCountDueToHealth") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); ASSERT_EQ(data.recentRecoveryCountDueToHealth(), 0); data.recentHealthTriggeredRecoveryTime.push(now() - SERVER_KNOBS->CC_TRACKING_HEALTH_RECOVERY_INTERVAL - 1); ASSERT_EQ(data.recentRecoveryCountDueToHealth(), 0); data.recentHealthTriggeredRecoveryTime.push(now() - SERVER_KNOBS->CC_TRACKING_HEALTH_RECOVERY_INTERVAL + 1); ASSERT_EQ(data.recentRecoveryCountDueToHealth(), 1); data.recentHealthTriggeredRecoveryTime.push(now()); ASSERT_EQ(data.recentRecoveryCountDueToHealth(), 2); return Void(); } TEST_CASE("/fdbserver/clustercontroller/shouldTriggerRecoveryDueToDegradedServers") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); NetworkAddress master(IPAddress(0x01010101), 1); NetworkAddress tlog(IPAddress(0x02020202), 1); NetworkAddress satelliteTlog(IPAddress(0x03030303), 1); NetworkAddress remoteTlog(IPAddress(0x04040404), 1); NetworkAddress logRouter(IPAddress(0x05050505), 1); NetworkAddress backup(IPAddress(0x06060606), 1); NetworkAddress proxy(IPAddress(0x07070707), 1); NetworkAddress resolver(IPAddress(0x08080808), 1); UID testUID(1, 2); // Create a ServerDBInfo using above addresses. ServerDBInfo testDbInfo; testDbInfo.master.changeCoordinators = RequestStream(Endpoint({ master }, testUID)); TLogInterface localTLogInterf; localTLogInterf.peekMessages = RequestStream(Endpoint({ tlog }, testUID)); TLogInterface localLogRouterInterf; localLogRouterInterf.peekMessages = RequestStream(Endpoint({ logRouter }, testUID)); BackupInterface backupInterf; backupInterf.waitFailure = RequestStream>(Endpoint({ backup }, testUID)); TLogSet localTLogSet; localTLogSet.isLocal = true; localTLogSet.tLogs.push_back(OptionalInterface(localTLogInterf)); localTLogSet.logRouters.push_back(OptionalInterface(localLogRouterInterf)); localTLogSet.backupWorkers.push_back(OptionalInterface(backupInterf)); testDbInfo.logSystemConfig.tLogs.push_back(localTLogSet); TLogInterface sateTLogInterf; sateTLogInterf.peekMessages = RequestStream(Endpoint({ satelliteTlog }, testUID)); TLogSet sateTLogSet; sateTLogSet.isLocal = true; sateTLogSet.locality = tagLocalitySatellite; sateTLogSet.tLogs.push_back(OptionalInterface(sateTLogInterf)); testDbInfo.logSystemConfig.tLogs.push_back(sateTLogSet); TLogInterface remoteTLogInterf; remoteTLogInterf.peekMessages = RequestStream(Endpoint({ remoteTlog }, testUID)); TLogSet remoteTLogSet; remoteTLogSet.isLocal = false; remoteTLogSet.tLogs.push_back(OptionalInterface(remoteTLogInterf)); testDbInfo.logSystemConfig.tLogs.push_back(remoteTLogSet); GrvProxyInterface proxyInterf; proxyInterf.getConsistentReadVersion = RequestStream(Endpoint({ proxy }, testUID)); testDbInfo.client.grvProxies.push_back(proxyInterf); ResolverInterface resolverInterf; resolverInterf.resolve = RequestStream(Endpoint({ resolver }, testUID)); testDbInfo.resolvers.push_back(resolverInterf); testDbInfo.recoveryState = RecoveryState::ACCEPTING_COMMITS; // No recovery when no degraded servers. data.db.serverInfo->set(testDbInfo); ASSERT(!data.shouldTriggerRecoveryDueToDegradedServers()); // Trigger recovery when master is degraded. data.degradedServers.insert(master); ASSERT(data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // Trigger recovery when primary TLog is degraded. data.degradedServers.insert(tlog); ASSERT(data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // No recovery when satellite Tlog is degraded. data.degradedServers.insert(satelliteTlog); ASSERT(!data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // No recovery when remote tlog is degraded. data.degradedServers.insert(remoteTlog); ASSERT(!data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // No recovery when log router is degraded. data.degradedServers.insert(logRouter); ASSERT(!data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // No recovery when backup worker is degraded. data.degradedServers.insert(backup); ASSERT(!data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // Trigger recovery when proxy is degraded. data.degradedServers.insert(proxy); ASSERT(data.shouldTriggerRecoveryDueToDegradedServers()); data.degradedServers.clear(); // Trigger recovery when resolver is degraded. data.degradedServers.insert(resolver); ASSERT(data.shouldTriggerRecoveryDueToDegradedServers()); return Void(); } TEST_CASE("/fdbserver/clustercontroller/shouldTriggerFailoverDueToDegradedServers") { // Create a testing ClusterControllerData. Most of the internal states do not matter in this test. ClusterControllerData data(ClusterControllerFullInterface(), LocalityData(), ServerCoordinators(Reference(new ClusterConnectionFile()))); NetworkAddress master(IPAddress(0x01010101), 1); NetworkAddress tlog(IPAddress(0x02020202), 1); NetworkAddress satelliteTlog(IPAddress(0x03030303), 1); NetworkAddress remoteTlog(IPAddress(0x04040404), 1); NetworkAddress logRouter(IPAddress(0x05050505), 1); NetworkAddress backup(IPAddress(0x06060606), 1); NetworkAddress proxy(IPAddress(0x07070707), 1); NetworkAddress proxy2(IPAddress(0x08080808), 1); NetworkAddress resolver(IPAddress(0x09090909), 1); UID testUID(1, 2); data.db.config.usableRegions = 2; // Create a ServerDBInfo using above addresses. ServerDBInfo testDbInfo; testDbInfo.master.changeCoordinators = RequestStream(Endpoint({ master }, testUID)); TLogInterface localTLogInterf; localTLogInterf.peekMessages = RequestStream(Endpoint({ tlog }, testUID)); TLogInterface localLogRouterInterf; localLogRouterInterf.peekMessages = RequestStream(Endpoint({ logRouter }, testUID)); BackupInterface backupInterf; backupInterf.waitFailure = RequestStream>(Endpoint({ backup }, testUID)); TLogSet localTLogSet; localTLogSet.isLocal = true; localTLogSet.tLogs.push_back(OptionalInterface(localTLogInterf)); localTLogSet.logRouters.push_back(OptionalInterface(localLogRouterInterf)); localTLogSet.backupWorkers.push_back(OptionalInterface(backupInterf)); testDbInfo.logSystemConfig.tLogs.push_back(localTLogSet); TLogInterface sateTLogInterf; sateTLogInterf.peekMessages = RequestStream(Endpoint({ satelliteTlog }, testUID)); TLogSet sateTLogSet; sateTLogSet.isLocal = true; sateTLogSet.locality = tagLocalitySatellite; sateTLogSet.tLogs.push_back(OptionalInterface(sateTLogInterf)); testDbInfo.logSystemConfig.tLogs.push_back(sateTLogSet); TLogInterface remoteTLogInterf; remoteTLogInterf.peekMessages = RequestStream(Endpoint({ remoteTlog }, testUID)); TLogSet remoteTLogSet; remoteTLogSet.isLocal = false; remoteTLogSet.tLogs.push_back(OptionalInterface(remoteTLogInterf)); testDbInfo.logSystemConfig.tLogs.push_back(remoteTLogSet); GrvProxyInterface grvProxyInterf; grvProxyInterf.getConsistentReadVersion = RequestStream(Endpoint({ proxy }, testUID)); testDbInfo.client.grvProxies.push_back(grvProxyInterf); CommitProxyInterface commitProxyInterf; commitProxyInterf.commit = RequestStream(Endpoint({ proxy2 }, testUID)); testDbInfo.client.commitProxies.push_back(commitProxyInterf); ResolverInterface resolverInterf; resolverInterf.resolve = RequestStream(Endpoint({ resolver }, testUID)); testDbInfo.resolvers.push_back(resolverInterf); testDbInfo.recoveryState = RecoveryState::ACCEPTING_COMMITS; // No failover when no degraded servers. data.db.serverInfo->set(testDbInfo); ASSERT(!data.shouldTriggerFailoverDueToDegradedServers()); // No failover when small number of degraded servers data.degradedServers.insert(master); ASSERT(!data.shouldTriggerFailoverDueToDegradedServers()); data.degradedServers.clear(); // Trigger failover when enough servers in the txn system are degraded. data.degradedServers.insert(master); data.degradedServers.insert(tlog); data.degradedServers.insert(proxy); data.degradedServers.insert(proxy2); data.degradedServers.insert(resolver); ASSERT(data.shouldTriggerFailoverDueToDegradedServers()); // No failover when usable region is 1. data.db.config.usableRegions = 1; ASSERT(!data.shouldTriggerFailoverDueToDegradedServers()); data.db.config.usableRegions = 2; // No failover when remote is also degraded. data.degradedServers.insert(remoteTlog); ASSERT(!data.shouldTriggerFailoverDueToDegradedServers()); data.degradedServers.clear(); // No failover when some are not from transaction system data.degradedServers.insert(NetworkAddress(IPAddress(0x13131313), 1)); data.degradedServers.insert(NetworkAddress(IPAddress(0x13131313), 2)); data.degradedServers.insert(NetworkAddress(IPAddress(0x13131313), 3)); data.degradedServers.insert(NetworkAddress(IPAddress(0x13131313), 4)); data.degradedServers.insert(NetworkAddress(IPAddress(0x13131313), 5)); ASSERT(!data.shouldTriggerFailoverDueToDegradedServers()); data.degradedServers.clear(); return Void(); } } // namespace