/* * MoveKeys.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2018 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flow/Util.h" #include "fdbrpc/FailureMonitor.h" #include "fdbclient/SystemData.h" #include "fdbserver/MoveKeys.actor.h" #include "fdbserver/Knobs.h" #include "flow/actorcompiler.h" // This must be the last #include. using std::min; using std::max; bool DDEnabledState::isDDEnabled() const { return ddEnabled; } bool DDEnabledState::setDDEnabled(bool status, UID snapUID) { TraceEvent("SetDDEnabled") .detail("Status", status) .detail("SnapUID", snapUID); ASSERT(snapUID != UID()); if (!status) { // disabling DD if (ddEnabledStatusUID != UID()) { // disable DD when a disable is already in progress not allowed return false; } ddEnabled = status; ddEnabledStatusUID = snapUID; return true; } // enabling DD if (snapUID != ddEnabledStatusUID) { // enabling DD not allowed if UID does not match with the disable request return false; } // reset to default status ddEnabled = status; ddEnabledStatusUID = UID(); return true; } ACTOR Future<MoveKeysLock> takeMoveKeysLock( Database cx, UID ddId ) { state Transaction tr(cx); loop { try { state MoveKeysLock lock; state UID txnId; tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); if( !g_network->isSimulated() ) { txnId = deterministicRandom()->randomUniqueID(); tr.debugTransaction(txnId); } { Optional<Value> readVal = wait( tr.get( moveKeysLockOwnerKey ) ); lock.prevOwner = readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID(); } { Optional<Value> readVal = wait( tr.get( moveKeysLockWriteKey ) ); lock.prevWrite = readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID(); } lock.myOwner = deterministicRandom()->randomUniqueID(); tr.set(moveKeysLockOwnerKey, BinaryWriter::toValue(lock.myOwner, Unversioned())); wait(tr.commit()); TraceEvent("TakeMoveKeysLockTransaction", ddId) .detail("TransactionUID", txnId) .detail("PrevOwner", lock.prevOwner.toString()) .detail("PrevWrite", lock.prevWrite.toString()) .detail("MyOwner", lock.myOwner.toString()); return lock; } catch (Error &e){ wait(tr.onError(e)); TEST(true); // takeMoveKeysLock retry } } } ACTOR static Future<Void> checkMoveKeysLock(Transaction* tr, MoveKeysLock lock, const DDEnabledState* ddEnabledState, bool isWrite = true) { if (!ddEnabledState->isDDEnabled()) { TraceEvent(SevDebug, "DDDisabledByInMemoryCheck"); throw movekeys_conflict(); } Optional<Value> readVal = wait( tr->get( moveKeysLockOwnerKey ) ); UID currentOwner = readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID(); if (currentOwner == lock.prevOwner) { // Check that the previous owner hasn't touched the lock since we took it Optional<Value> readVal = wait( tr->get( moveKeysLockWriteKey ) ); UID lastWrite = readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID(); if (lastWrite != lock.prevWrite) { TEST(true); // checkMoveKeysLock: Conflict with previous owner throw movekeys_conflict(); } // Take the lock if (isWrite) { BinaryWriter wrMyOwner(Unversioned()); wrMyOwner << lock.myOwner; tr->set(moveKeysLockOwnerKey, wrMyOwner.toValue()); BinaryWriter wrLastWrite(Unversioned()); UID lastWriter = deterministicRandom()->randomUniqueID(); wrLastWrite << lastWriter; tr->set(moveKeysLockWriteKey, wrLastWrite.toValue()); TraceEvent("CheckMoveKeysLock") .detail("PrevOwner", lock.prevOwner.toString()) .detail("PrevWrite", lock.prevWrite.toString()) .detail("MyOwner", lock.myOwner.toString()) .detail("Writer", lastWriter.toString()); } return Void(); } else if (currentOwner == lock.myOwner) { if(isWrite) { // Touch the lock, preventing overlapping attempts to take it BinaryWriter wrLastWrite(Unversioned()); wrLastWrite << deterministicRandom()->randomUniqueID(); tr->set( moveKeysLockWriteKey, wrLastWrite.toValue() ); // Make this transaction self-conflicting so the database will not execute it twice with the same write key tr->makeSelfConflicting(); } return Void(); } else { TEST(true); // checkMoveKeysLock: Conflict with new owner throw movekeys_conflict(); } } Future<Void> checkMoveKeysLockReadOnly(Transaction* tr, MoveKeysLock lock, const DDEnabledState* ddEnabledState) { return checkMoveKeysLock(tr, lock, ddEnabledState, false); } ACTOR Future<Optional<UID>> checkReadWrite(Future<ErrorOr<GetShardStateReply>> fReply, UID uid, Version version) { ErrorOr<GetShardStateReply> reply = wait(fReply); if (!reply.present() || reply.get().first < version) return Optional<UID>(); return Optional<UID>(uid); } Future<Void> removeOldDestinations(Transaction *tr, UID oldDest, VectorRef<KeyRangeRef> shards, KeyRangeRef currentKeys) { KeyRef beginKey = currentKeys.begin; vector<Future<Void>> actors; for(int i = 0; i < shards.size(); i++) { if(beginKey < shards[i].begin) actors.push_back(krmSetRangeCoalescing(tr, serverKeysPrefixFor(oldDest), KeyRangeRef(beginKey, shards[i].begin), allKeys, serverKeysFalse)); beginKey = shards[i].end; } if(beginKey < currentKeys.end) actors.push_back(krmSetRangeCoalescing(tr, serverKeysPrefixFor(oldDest), KeyRangeRef(beginKey, currentKeys.end), allKeys, serverKeysFalse)); return waitForAll(actors); } ACTOR Future<vector<UID>> addReadWriteDestinations(KeyRangeRef shard, vector<StorageServerInterface> srcInterfs, vector<StorageServerInterface> destInterfs, Version version, int desiredHealthy, int maxServers) { if(srcInterfs.size() >= maxServers) { return vector<UID>(); } state vector< Future<Optional<UID>> > srcChecks; for(int s=0; s<srcInterfs.size(); s++) { srcChecks.push_back( checkReadWrite( srcInterfs[s].getShardState.getReplyUnlessFailedFor( GetShardStateRequest( shard, GetShardStateRequest::NO_WAIT), SERVER_KNOBS->SERVER_READY_QUORUM_INTERVAL, 0, TaskPriority::MoveKeys ), srcInterfs[s].id(), 0 ) ); } state vector< Future<Optional<UID>> > destChecks; for(int s=0; s<destInterfs.size(); s++) { destChecks.push_back( checkReadWrite( destInterfs[s].getShardState.getReplyUnlessFailedFor( GetShardStateRequest( shard, GetShardStateRequest::NO_WAIT), SERVER_KNOBS->SERVER_READY_QUORUM_INTERVAL, 0, TaskPriority::MoveKeys ), destInterfs[s].id(), version ) ); } wait( waitForAll(srcChecks) && waitForAll(destChecks) ); int healthySrcs = 0; for(auto it : srcChecks) { if( it.get().present() ) { healthySrcs++; } } vector<UID> result; int totalDesired = std::min<int>(desiredHealthy - healthySrcs, maxServers - srcInterfs.size()); for(int s = 0; s < destInterfs.size() && result.size() < totalDesired; s++) { if(destChecks[s].get().present()) { result.push_back(destChecks[s].get().get()); } } return result; } ACTOR Future<vector<vector<UID>>> additionalSources(Standalone<RangeResultRef> shards, Transaction* tr, int desiredHealthy, int maxServers) { state Standalone<RangeResultRef> UIDtoTagMap = wait( tr->getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY) ); ASSERT( !UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY ); vector<Future<Optional<Value>>> serverListEntries; std::set<UID> fetching; for(int i = 0; i < shards.size() - 1; ++i) { vector<UID> src; vector<UID> dest; decodeKeyServersValue( UIDtoTagMap, shards[i].value, src, dest ); for(int s=0; s<src.size(); s++) { if(!fetching.count(src[s])) { fetching.insert(src[s]); serverListEntries.push_back( tr->get( serverListKeyFor(src[s]) ) ); } } for(int s=0; s<dest.size(); s++) { if(!fetching.count(dest[s])) { fetching.insert(dest[s]); serverListEntries.push_back( tr->get( serverListKeyFor(dest[s]) ) ); } } } vector<Optional<Value>> serverListValues = wait( getAll(serverListEntries) ); std::map<UID, StorageServerInterface> ssiMap; for(int s=0; s<serverListValues.size(); s++) { auto si = decodeServerListValue(serverListValues[s].get()); StorageServerInterface ssi = decodeServerListValue(serverListValues[s].get()); ssiMap[ssi.id()] = ssi; } vector<Future<vector<UID>>> allChecks; for(int i = 0; i < shards.size() - 1; ++i) { KeyRangeRef rangeIntersectKeys( shards[i].key, shards[i+1].key ); vector<UID> src; vector<UID> dest; vector<StorageServerInterface> srcInterfs; vector<StorageServerInterface> destInterfs; decodeKeyServersValue( UIDtoTagMap, shards[i].value, src, dest ); for(int s=0; s<src.size(); s++) { srcInterfs.push_back( ssiMap[src[s]] ); } for(int s=0; s<dest.size(); s++) { if( std::find(src.begin(), src.end(), dest[s]) == dest.end() ) { destInterfs.push_back( ssiMap[dest[s]] ); } } allChecks.push_back(addReadWriteDestinations(rangeIntersectKeys, srcInterfs, destInterfs, tr->getReadVersion().get(), desiredHealthy, maxServers)); } vector<vector<UID>> result = wait(getAll(allChecks)); return result; } ACTOR Future<Void> logWarningAfter( const char * context, double duration, vector<UID> servers) { state double startTime = now(); loop { wait(delay(duration)); TraceEvent(SevWarnAlways, context).detail("Duration", now() - startTime).detail("Servers", describe(servers)); } } // keyServer: map from keys to destination servers // serverKeys: two-dimension map: [servers][keys], value is the servers' state of having the keys: active(not-have), complete(already has), ""(). // Set keyServers[keys].dest = servers // Set serverKeys[servers][keys] = active for each subrange of keys that the server did not already have, complete for each subrange that it already has // Set serverKeys[dest][keys] = "" for the dest servers of each existing shard in keys (unless that destination is a member of servers OR if the source list is sufficiently degraded) ACTOR static Future<Void> startMoveKeys(Database occ, KeyRange keys, vector<UID> servers, MoveKeysLock lock, FlowLock* startMoveKeysLock, UID relocationIntervalId, const DDEnabledState* ddEnabledState) { state TraceInterval interval("RelocateShard_StartMoveKeys"); state Future<Void> warningLogger = logWarningAfter("StartMoveKeysTooLong", 600, servers); //state TraceInterval waitInterval(""); wait( startMoveKeysLock->take( TaskPriority::DataDistributionLaunch ) ); state FlowLock::Releaser releaser( *startMoveKeysLock ); TraceEvent(SevDebug, interval.begin(), relocationIntervalId); try { state Key begin = keys.begin; state int batches = 0; state int shards = 0; state int maxRetries = 0; // If it's multiple transaction, how do we achieve atomicity? // This process can be split up into multiple transactions if there are too many existing overlapping shards // In that case, each iteration of this loop will have begin set to the end of the last processed shard while(begin < keys.end) { TEST(begin > keys.begin); //Multi-transactional startMoveKeys batches++; state Transaction tr( occ ); state int retries = 0; loop { try { retries++; //Keep track of old dests that may need to have ranges removed from serverKeys state std::set<UID> oldDests; //Keep track of shards for all src servers so that we can preserve their values in serverKeys state Map<UID, VectorRef<KeyRangeRef>> shardMap; tr.info.taskID = TaskPriority::MoveKeys; tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); wait(checkMoveKeysLock(&tr, lock, ddEnabledState)); vector< Future< Optional<Value> > > serverListEntries; for(int s=0; s<servers.size(); s++) serverListEntries.push_back( tr.get( serverListKeyFor(servers[s]) ) ); state vector<Optional<Value>> serverListValues = wait( getAll(serverListEntries) ); for(int s=0; s<serverListValues.size(); s++) { if (!serverListValues[s].present()) { // Attempt to move onto a server that isn't in serverList (removed or never added to the // database) This can happen (why?) and is handled by the data distribution algorithm // FIXME: Answer why this can happen? TEST(true); //start move keys moving to a removed server throw move_to_removed_server(); } } //Get all existing shards overlapping keys (exclude any that have been processed in a previous iteration of the outer loop) state KeyRange currentKeys = KeyRangeRef(begin, keys.end); state Standalone<RangeResultRef> old = wait( krmGetRanges( &tr, keyServersPrefix, currentKeys, SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT, SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES) ); //Determine the last processed key (which will be the beginning for the next iteration) state Key endKey = old.end()[-1].key; currentKeys = KeyRangeRef(currentKeys.begin, endKey); // TraceEvent("StartMoveKeysBatch", relocationIntervalId) // .detail("KeyBegin", currentKeys.begin.toString()) // .detail("KeyEnd", currentKeys.end.toString()); // printf("Moving '%s'-'%s' (%d) to %d servers\n", keys.begin.toString().c_str(), // keys.end.toString().c_str(), old.size(), servers.size()); for(int i=0; i<old.size(); i++) // printf("'%s': '%s'\n", old[i].key.toString().c_str(), old[i].value.toString().c_str()); //Check that enough servers for each shard are in the correct state state Standalone<RangeResultRef> UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY)); ASSERT( !UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY ); vector<vector<UID>> addAsSource = wait(additionalSources(old, &tr, servers.size(), SERVER_KNOBS->MAX_ADDED_SOURCES_MULTIPLIER*servers.size())); // For each intersecting range, update keyServers[range] dest to be servers and clear existing dest servers from serverKeys for(int i = 0; i < old.size() - 1; ++i) { KeyRangeRef rangeIntersectKeys( old[i].key, old[i+1].key ); vector<UID> src; vector<UID> dest; decodeKeyServersValue( UIDtoTagMap, old[i].value, src, dest ); // TraceEvent("StartMoveKeysOldRange", relocationIntervalId) // .detail("KeyBegin", rangeIntersectKeys.begin.toString()) // .detail("KeyEnd", rangeIntersectKeys.end.toString()) // .detail("OldSrc", describe(src)) // .detail("OldDest", describe(dest)) // .detail("ReadVersion", tr.getReadVersion().get()); for(auto& uid : addAsSource[i]) { src.push_back(uid); } uniquify(src); //Update dest servers for this range to be equal to servers krmSetPreviouslyEmptyRange( &tr, keyServersPrefix, rangeIntersectKeys, keyServersValue(UIDtoTagMap, src, servers), old[i+1].value ); //Track old destination servers. They may be removed from serverKeys soon, since they are about to be overwritten in keyServers for(auto s = dest.begin(); s != dest.end(); ++s) { oldDests.insert(*s); // TraceEvent("StartMoveKeysOldDestAdd", relocationIntervalId).detail("Server", *s); } //Keep track of src shards so that we can preserve their values when we overwrite serverKeys for(auto& uid : src) { shardMap[uid].push_back(old.arena(), rangeIntersectKeys); // TraceEvent("StartMoveKeysShardMapAdd", relocationIntervalId).detail("Server", uid); } } state std::set<UID>::iterator oldDest; //Remove old dests from serverKeys. In order for krmSetRangeCoalescing to work correctly in the same prefix for a single transaction, we must //do most of the coalescing ourselves. Only the shards on the boundary of currentRange are actually coalesced with the ranges outside of currentRange. //For all shards internal to currentRange, we overwrite all consecutive keys whose value is or should be serverKeysFalse in a single write vector<Future<Void>> actors; for(oldDest = oldDests.begin(); oldDest != oldDests.end(); ++oldDest) if( std::find(servers.begin(), servers.end(), *oldDest) == servers.end() ) actors.push_back( removeOldDestinations( &tr, *oldDest, shardMap[*oldDest], currentKeys ) ); //Update serverKeys to include keys (or the currently processed subset of keys) for each SS in servers for(int i = 0; i < servers.size(); i++ ) { // Since we are setting this for the entire range, serverKeys and keyServers aren't guaranteed to have the same shard boundaries // If that invariant was important, we would have to move this inside the loop above and also set it for the src servers actors.push_back( krmSetRangeCoalescing( &tr, serverKeysPrefixFor( servers[i] ), currentKeys, allKeys, serverKeysTrue) ); } wait( waitForAll( actors ) ); wait( tr.commit() ); /*TraceEvent("StartMoveKeysCommitDone", relocationIntervalId) .detail("CommitVersion", tr.getCommittedVersion()) .detail("ShardsInBatch", old.size() - 1);*/ begin = endKey; shards += old.size() - 1; break; } catch (Error& e) { state Error err = e; if (err.code() == error_code_move_to_removed_server) throw; wait( tr.onError(e) ); if(retries%10 == 0) { TraceEvent(retries == 50 ? SevWarnAlways : SevWarn, "StartMoveKeysRetrying", relocationIntervalId) .error(err) .detail("Keys", keys) .detail("BeginKey", begin) .detail("NumTries", retries); } } } if(retries > maxRetries) { maxRetries = retries; } } //printf("Committed moving '%s'-'%s' (version %lld)\n", keys.begin.toString().c_str(), keys.end.toString().c_str(), tr.getCommittedVersion()); TraceEvent(SevDebug, interval.end(), relocationIntervalId) .detail("Batches", batches) .detail("Shards", shards) .detail("MaxRetries", maxRetries); } catch( Error& e ) { TraceEvent(SevDebug, interval.end(), relocationIntervalId).error(e, true); throw; } return Void(); } ACTOR Future<Void> waitForShardReady( StorageServerInterface server, KeyRange keys, Version minVersion, GetShardStateRequest::waitMode mode ) { loop { try { GetShardStateReply rep = wait(server.getShardState.getReply(GetShardStateRequest(keys, mode), TaskPriority::MoveKeys)); if (rep.first >= minVersion) { return Void(); } wait( delayJittered( SERVER_KNOBS->SHARD_READY_DELAY, TaskPriority::MoveKeys ) ); } catch (Error& e) { if( e.code() != error_code_timed_out ) { if (e.code() != error_code_broken_promise) throw e; wait(Never()); // Never return: A storage server which has failed will never be ready throw internal_error(); // does not happen } } } } ACTOR Future<Void> checkFetchingState( Database cx, vector<UID> dest, KeyRange keys, Promise<Void> dataMovementComplete, UID relocationIntervalId ) { state Transaction tr(cx); loop { try { if (BUGGIFY) wait(delay(5)); tr.info.taskID = TaskPriority::MoveKeys; tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); vector< Future< Optional<Value> > > serverListEntries; for(int s=0; s<dest.size(); s++) serverListEntries.push_back( tr.get( serverListKeyFor(dest[s]) ) ); state vector<Optional<Value>> serverListValues = wait( getAll(serverListEntries) ); vector<Future<Void>> requests; for(int s=0; s<serverListValues.size(); s++) { if( !serverListValues[s].present() ) { // FIXME: Is this the right behavior? dataMovementComplete will never be sent! TEST(true); //check fetching state moved to removed server throw move_to_removed_server(); } auto si = decodeServerListValue(serverListValues[s].get()); ASSERT( si.id() == dest[s] ); requests.push_back( waitForShardReady( si, keys, tr.getReadVersion().get(), GetShardStateRequest::FETCHING ) ); } wait( timeoutError( waitForAll( requests ), SERVER_KNOBS->SERVER_READY_QUORUM_TIMEOUT, TaskPriority::MoveKeys ) ); dataMovementComplete.send(Void()); return Void(); } catch( Error& e ) { if( e.code() == error_code_timed_out ) tr.reset(); else wait( tr.onError(e) ); } } } // Set keyServers[keys].src = keyServers[keys].dest and keyServers[keys].dest=[], return when successful // keyServers[k].dest must be the same for all k in keys // Set serverKeys[dest][keys] = true; serverKeys[src][keys] = false for all src not in dest // Should be cancelled and restarted if keyServers[keys].dest changes (?so this is no longer true?) ACTOR static Future<Void> finishMoveKeys(Database occ, KeyRange keys, vector<UID> destinationTeam, MoveKeysLock lock, FlowLock* finishMoveKeysParallelismLock, bool hasRemote, UID relocationIntervalId, const DDEnabledState* ddEnabledState) { state TraceInterval interval("RelocateShard_FinishMoveKeys"); state TraceInterval waitInterval(""); state Future<Void> warningLogger = logWarningAfter("FinishMoveKeysTooLong", 600, destinationTeam); state Key begin = keys.begin; state Key endKey; state int retries = 0; state FlowLock::Releaser releaser; ASSERT (!destinationTeam.empty()); try { TraceEvent(SevDebug, interval.begin(), relocationIntervalId).detail("KeyBegin", keys.begin).detail("KeyEnd", keys.end); //This process can be split up into multiple transactions if there are too many existing overlapping shards //In that case, each iteration of this loop will have begin set to the end of the last processed shard while(begin < keys.end) { TEST(begin > keys.begin); //Multi-transactional finishMoveKeys state Transaction tr( occ ); //printf("finishMoveKeys( '%s'-'%s' )\n", keys.begin.toString().c_str(), keys.end.toString().c_str()); loop { try { tr.info.taskID = TaskPriority::MoveKeys; tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); releaser.release(); wait( finishMoveKeysParallelismLock->take( TaskPriority::DataDistributionLaunch ) ); releaser = FlowLock::Releaser( *finishMoveKeysParallelismLock ); wait(checkMoveKeysLock(&tr, lock, ddEnabledState)); state KeyRange currentKeys = KeyRangeRef(begin, keys.end); state Standalone<RangeResultRef> UIDtoTagMap = wait( tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY) ); ASSERT( !UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY ); state Standalone<RangeResultRef> keyServers = wait( krmGetRanges( &tr, keyServersPrefix, currentKeys, SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT, SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES ) ); //Determine the last processed key (which will be the beginning for the next iteration) endKey = keyServers.end()[-1].key; currentKeys = KeyRangeRef(currentKeys.begin, endKey); //printf(" finishMoveKeys( '%s'-'%s' ): read keyServers at %lld\n", keys.begin.toString().c_str(), keys.end.toString().c_str(), tr.getReadVersion().get()); // Decode and sanity check the result (dest must be the same for all ranges) bool alreadyMoved = true; state vector<UID> dest; state std::set<UID> allServers; state std::set<UID> intendedTeam(destinationTeam.begin(), destinationTeam.end()); state vector<UID> src; vector<UID> completeSrc; //Iterate through the beginning of keyServers until we find one that hasn't already been processed int currentIndex; for(currentIndex = 0; currentIndex < keyServers.size() - 1 && alreadyMoved; currentIndex++) { decodeKeyServersValue( UIDtoTagMap, keyServers[currentIndex].value, src, dest ); std::set<UID> srcSet; for(int s = 0; s < src.size(); s++) { srcSet.insert(src[s]); } if(currentIndex == 0) { completeSrc = src; } else { for(int i = 0; i < completeSrc.size(); i++) { if(!srcSet.count(completeSrc[i])) { swapAndPop(&completeSrc, i--); } } } std::set<UID> destSet; for(int s = 0; s < dest.size(); s++) { destSet.insert(dest[s]); } allServers.insert(srcSet.begin(), srcSet.end()); allServers.insert(destSet.begin(), destSet.end()); // Because marking a server as failed can shrink a team, do not check for exact equality // Instead, check for a subset of the intended team, which also covers the equality case bool isSubset = std::includes(intendedTeam.begin(), intendedTeam.end(), srcSet.begin(), srcSet.end()); alreadyMoved = destSet.empty() && isSubset; if(destSet != intendedTeam && !alreadyMoved) { TraceEvent(SevWarn, "MoveKeysDestTeamNotIntended", relocationIntervalId) .detail("KeyBegin", keys.begin) .detail("KeyEnd", keys.end) .detail("IterationBegin", begin) .detail("IterationEnd", endKey) .detail("SrcSet", describe(srcSet)) .detail("DestSet", describe(destSet)) .detail("IntendedTeam", describe(intendedTeam)) .detail("KeyServers", keyServers); //ASSERT( false ); ASSERT(!dest.empty()); //The range has already been moved, but to a different dest (or maybe dest was cleared) intendedTeam.clear(); for(int i = 0; i < dest.size(); i++) intendedTeam.insert(dest[i]); } else if(alreadyMoved) { dest.clear(); src.clear(); TEST(true); //FinishMoveKeys first key in iteration sub-range has already been processed } } //Process the rest of the key servers for(; currentIndex < keyServers.size() - 1; currentIndex++) { vector<UID> src2, dest2; decodeKeyServersValue( UIDtoTagMap, keyServers[currentIndex].value, src2, dest2 ); std::set<UID> srcSet; for(int s = 0; s < src2.size(); s++) srcSet.insert(src2[s]); for(int i = 0; i < completeSrc.size(); i++) { if(!srcSet.count(completeSrc[i])) { swapAndPop(&completeSrc, i--); } } allServers.insert(srcSet.begin(), srcSet.end()); // Because marking a server as failed can shrink a team, do not check for exact equality // Instead, check for a subset of the intended team, which also covers the equality case bool isSubset = std::includes(intendedTeam.begin(), intendedTeam.end(), srcSet.begin(), srcSet.end()); alreadyMoved = dest2.empty() && isSubset; if (dest2 != dest && !alreadyMoved) { TraceEvent(SevError,"FinishMoveKeysError", relocationIntervalId) .detail("Reason", "dest mismatch") .detail("Dest", describe(dest)) .detail("Dest2", describe(dest2)); ASSERT(false); } } if (!dest.size()) { TEST(true); // A previous finishMoveKeys for this range committed just as it was cancelled to start this one? TraceEvent("FinishMoveKeysNothingToDo", relocationIntervalId) .detail("KeyBegin", keys.begin) .detail("KeyEnd", keys.end) .detail("IterationBegin", begin) .detail("IterationEnd", endKey); begin = keyServers.end()[-1].key; break; } waitInterval = TraceInterval("RelocateShard_FinishMoveKeysWaitDurable"); TraceEvent(SevDebug, waitInterval.begin(), relocationIntervalId) .detail("KeyBegin", keys.begin) .detail("KeyEnd", keys.end); // Wait for a durable quorum of servers in destServers to have keys available (readWrite) // They must also have at least the transaction read version so they can't "forget" the shard between // now and when this transaction commits. state vector< Future<Void> > serverReady; // only for count below state vector<UID> newDestinations; std::set<UID> completeSrcSet(completeSrc.begin(), completeSrc.end()); for(auto& it : dest) { if(!hasRemote || !completeSrcSet.count(it)) { newDestinations.push_back(it); } } // for smartQuorum state vector<StorageServerInterface> storageServerInterfaces; vector< Future< Optional<Value> > > serverListEntries; for(int s=0; s<newDestinations.size(); s++) serverListEntries.push_back( tr.get( serverListKeyFor(newDestinations[s]) ) ); state vector<Optional<Value>> serverListValues = wait( getAll(serverListEntries) ); releaser.release(); for(int s=0; s<serverListValues.size(); s++) { ASSERT( serverListValues[s].present() ); // There should always be server list entries for servers in keyServers auto si = decodeServerListValue(serverListValues[s].get()); ASSERT( si.id() == newDestinations[s] ); storageServerInterfaces.push_back( si ); } // Wait for new destination servers to fetch the keys for(int s=0; s<storageServerInterfaces.size(); s++) serverReady.push_back( waitForShardReady( storageServerInterfaces[s], keys, tr.getReadVersion().get(), GetShardStateRequest::READABLE) ); wait( timeout( waitForAll( serverReady ), SERVER_KNOBS->SERVER_READY_QUORUM_TIMEOUT, Void(), TaskPriority::MoveKeys ) ); int count = dest.size() - newDestinations.size(); for(int s=0; s<serverReady.size(); s++) count += serverReady[s].isReady() && !serverReady[s].isError(); //printf(" fMK: moved data to %d/%d servers\n", count, serverReady.size()); TraceEvent(SevDebug, waitInterval.end(), relocationIntervalId).detail("ReadyServers", count); if( count == dest.size() ) { // update keyServers, serverKeys // SOMEDAY: Doing these in parallel is safe because none of them overlap or touch (one per server) wait( krmSetRangeCoalescing( &tr, keyServersPrefix, currentKeys, keys, keyServersValue( UIDtoTagMap, dest ) ) ); std::set<UID>::iterator asi = allServers.begin(); std::vector<Future<Void>> actors; while (asi != allServers.end()) { bool destHasServer = std::find(dest.begin(), dest.end(), *asi) != dest.end(); actors.push_back( krmSetRangeCoalescing( &tr, serverKeysPrefixFor(*asi), currentKeys, allKeys, destHasServer ? serverKeysTrue : serverKeysFalse ) ); ++asi; } wait(waitForAll(actors)); wait( tr.commit() ); begin = endKey; break; } tr.reset(); } catch (Error& error) { if (error.code() == error_code_actor_cancelled) throw; state Error err = error; wait( tr.onError(error) ); retries++; if(retries%10 == 0) { TraceEvent(retries == 20 ? SevWarnAlways : SevWarn, "RelocateShard_FinishMoveKeysRetrying", relocationIntervalId) .error(err) .detail("KeyBegin", keys.begin) .detail("KeyEnd", keys.end) .detail("IterationBegin", begin) .detail("IterationEnd", endKey); } } } } TraceEvent(SevDebug, interval.end(), relocationIntervalId); } catch(Error &e) { TraceEvent(SevDebug, interval.end(), relocationIntervalId).error(e, true); throw; } return Void(); } ACTOR Future<std::pair<Version, Tag>> addStorageServer( Database cx, StorageServerInterface server ) { state Transaction tr( cx ); state int maxSkipTags = 1; loop { try { state Future<Standalone<RangeResultRef>> fTagLocalities = tr.getRange( tagLocalityListKeys, CLIENT_KNOBS->TOO_MANY ); state Future<Optional<Value>> fv = tr.get( serverListKeyFor(server.id()) ); state Future<Optional<Value>> fExclProc = tr.get( StringRef(encodeExcludedServersKey( AddressExclusion( server.address().ip, server.address().port ))) ); state Future<Optional<Value>> fExclIP = tr.get( StringRef(encodeExcludedServersKey( AddressExclusion( server.address().ip ))) ); state Future<Optional<Value>> fFailProc = tr.get( StringRef(encodeFailedServersKey( AddressExclusion( server.address().ip, server.address().port ))) ); state Future<Optional<Value>> fFailIP = tr.get( StringRef(encodeFailedServersKey( AddressExclusion( server.address().ip ))) ); state Future<Optional<Value>> fExclProc2 = server.secondaryAddress().present() ? tr.get( StringRef(encodeExcludedServersKey( AddressExclusion( server.secondaryAddress().get().ip, server.secondaryAddress().get().port ))) ) : Future<Optional<Value>>( Optional<Value>() ); state Future<Optional<Value>> fExclIP2 = server.secondaryAddress().present() ? tr.get( StringRef(encodeExcludedServersKey( AddressExclusion( server.secondaryAddress().get().ip ))) ) : Future<Optional<Value>>( Optional<Value>() ); state Future<Optional<Value>> fFailProc2 = server.secondaryAddress().present() ? tr.get( StringRef(encodeFailedServersKey( AddressExclusion( server.secondaryAddress().get().ip, server.secondaryAddress().get().port ))) ) : Future<Optional<Value>>( Optional<Value>() ); state Future<Optional<Value>> fFailIP2 = server.secondaryAddress().present() ? tr.get( StringRef(encodeFailedServersKey( AddressExclusion( server.secondaryAddress().get().ip ))) ) : Future<Optional<Value>>( Optional<Value>() ); state Future<Standalone<RangeResultRef>> fTags = tr.getRange( serverTagKeys, CLIENT_KNOBS->TOO_MANY, true); state Future<Standalone<RangeResultRef>> fHistoryTags = tr.getRange( serverTagHistoryKeys, CLIENT_KNOBS->TOO_MANY, true); wait( success(fTagLocalities) && success(fv) && success(fTags) && success(fHistoryTags) && success(fExclProc) && success(fExclIP) && success(fFailProc) && success(fFailIP) && success(fExclProc2) && success(fExclIP2) && success(fFailProc2) && success(fFailIP2) ); // If we have been added to the excluded/failed state servers list, we have to fail if (fExclProc.get().present() || fExclIP.get().present() || fFailProc.get().present() || fFailIP.get().present() || fExclProc2.get().present() || fExclIP2.get().present() || fFailProc2.get().present() || fFailIP2.get().present() ) { throw recruitment_failed(); } if(fTagLocalities.get().more || fTags.get().more || fHistoryTags.get().more) ASSERT(false); int8_t maxTagLocality = 0; state int8_t locality = -1; for(auto& kv : fTagLocalities.get()) { int8_t loc = decodeTagLocalityListValue( kv.value ); if( decodeTagLocalityListKey( kv.key ) == server.locality.dcId() ) { locality = loc; break; } maxTagLocality = std::max(maxTagLocality, loc); } if(locality == -1) { locality = maxTagLocality + 1; if(locality < 0) throw recruitment_failed(); tr.set( tagLocalityListKeyFor(server.locality.dcId()), tagLocalityListValue(locality) ); } int skipTags = deterministicRandom()->randomInt(0, maxSkipTags); state uint16_t tagId = 0; std::vector<uint16_t> usedTags; for(auto& it : fTags.get()) { Tag t = decodeServerTagValue( it.value ); if(t.locality == locality) { usedTags.push_back(t.id); } } for(auto& it : fHistoryTags.get()) { Tag t = decodeServerTagValue( it.value ); if(t.locality == locality) { usedTags.push_back(t.id); } } std::sort(usedTags.begin(), usedTags.end()); int usedIdx = 0; for(; usedTags.size() > 0 && tagId <= usedTags.end()[-1]; tagId++) { if(tagId < usedTags[usedIdx]) { if(skipTags == 0) break; skipTags--; } else { usedIdx++; } } tagId += skipTags; state Tag tag(locality, tagId); tr.set( serverTagKeyFor(server.id()), serverTagValue(tag) ); tr.set( serverListKeyFor(server.id()), serverListValue(server) ); KeyRange conflictRange = singleKeyRange(serverTagConflictKeyFor(tag)); tr.addReadConflictRange( conflictRange ); tr.addWriteConflictRange( conflictRange ); wait( tr.commit() ); return std::make_pair(tr.getCommittedVersion(), tag); } catch (Error& e) { if(e.code() == error_code_commit_unknown_result) throw recruitment_failed(); // There is a remote possibility that we successfully added ourselves and then someone removed us, so we have to fail if(e.code() == error_code_not_committed) { maxSkipTags = SERVER_KNOBS->MAX_SKIP_TAGS; } wait( tr.onError(e) ); } } } // A SS can be removed only if all data (shards) on the SS have been moved away from the SS. ACTOR Future<bool> canRemoveStorageServer( Transaction* tr, UID serverID ) { Standalone<RangeResultRef> keys = wait(krmGetRanges(tr, serverKeysPrefixFor(serverID), allKeys, 2)); ASSERT(keys.size() >= 2); if(keys[0].value == keys[1].value && keys[1].key != allKeys.end) { TraceEvent("ServerKeysCoalescingError", serverID).detail("Key1", keys[0].key).detail("Key2", keys[1].key).detail("Value", keys[0].value); ASSERT(false); } //Return true if the entire range is false. Since these values are coalesced, we can return false if there is more than one result return keys[0].value == serverKeysFalse && keys[1].key == allKeys.end; } ACTOR Future<Void> removeStorageServer(Database cx, UID serverID, MoveKeysLock lock, const DDEnabledState* ddEnabledState) { state Transaction tr( cx ); state bool retry = false; state int noCanRemoveCount = 0; loop { try { tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); wait(checkMoveKeysLock(&tr, lock, ddEnabledState)); TraceEvent("RemoveStorageServerLocked").detail("ServerID", serverID).detail("Version", tr.getReadVersion().get()); state bool canRemove = wait( canRemoveStorageServer( &tr, serverID ) ); if (!canRemove) { TEST(true); // The caller had a transaction in flight that assigned keys to the server. Wait for it to reverse its mistake. TraceEvent(SevWarn,"NoCanRemove").detail("Count", noCanRemoveCount++).detail("ServerID", serverID); wait( delayJittered(SERVER_KNOBS->REMOVE_RETRY_DELAY, TaskPriority::DataDistributionLaunch) ); tr.reset(); TraceEvent("RemoveStorageServerRetrying").detail("CanRemove", canRemove); } else { state Future<Optional<Value>> fListKey = tr.get( serverListKeyFor(serverID) ); state Future<Standalone<RangeResultRef>> fTags = tr.getRange( serverTagKeys, CLIENT_KNOBS->TOO_MANY ); state Future<Standalone<RangeResultRef>> fHistoryTags = tr.getRange( serverTagHistoryKeys, CLIENT_KNOBS->TOO_MANY ); state Future<Standalone<RangeResultRef>> fTagLocalities = tr.getRange( tagLocalityListKeys, CLIENT_KNOBS->TOO_MANY ); state Future<Standalone<RangeResultRef>> fTLogDatacenters = tr.getRange( tLogDatacentersKeys, CLIENT_KNOBS->TOO_MANY ); wait( success(fListKey) && success(fTags) && success(fHistoryTags) && success(fTagLocalities) && success(fTLogDatacenters) ); if (!fListKey.get().present()) { if (retry) { TEST(true); // Storage server already removed after retrying transaction return Void(); } ASSERT(false); // Removing an already-removed server? A never added server? } int8_t locality = -100; std::set<int8_t> allLocalities; for(auto& it : fTags.get()) { UID sId = decodeServerTagKey( it.key ); Tag t = decodeServerTagValue( it.value ); if(sId == serverID) { locality = t.locality; } else { allLocalities.insert(t.locality); } } for(auto& it : fHistoryTags.get()) { Tag t = decodeServerTagValue( it.value ); allLocalities.insert(t.locality); } std::map<Optional<Value>,int8_t> dcId_locality; for(auto& kv : fTagLocalities.get()) { dcId_locality[decodeTagLocalityListKey(kv.key)] = decodeTagLocalityListValue(kv.value); } for(auto& it : fTLogDatacenters.get()) { allLocalities.insert(dcId_locality[decodeTLogDatacentersKey(it.key)]); } if(locality >= 0 && !allLocalities.count(locality) ) { for(auto& it : fTagLocalities.get()) { if( locality == decodeTagLocalityListValue(it.value) ) { tr.clear(it.key); break; } } } tr.clear( serverListKeyFor(serverID) ); tr.clear( serverTagKeyFor(serverID) ); tr.clear( serverTagHistoryRangeFor(serverID) ); retry = true; wait( tr.commit() ); return Void(); } } catch (Error& e) { state Error err = e; wait( tr.onError(e) ); TraceEvent("RemoveStorageServerRetrying").error(err); } } } // Remove the server from keyServer list and set serverKeysFalse to the server's serverKeys list. // Changes to keyServer and serverKey must happen symmetrically in a transaction. ACTOR Future<Void> removeKeysFromFailedServer(Database cx, UID serverID, MoveKeysLock lock, const DDEnabledState* ddEnabledState) { state Key begin = allKeys.begin; // Multi-transactional removal in case of large number of shards, concern in violating 5s transaction limit while (begin < allKeys.end) { state Transaction tr(cx); loop { try { tr.info.taskID = TaskPriority::MoveKeys; tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE); wait(checkMoveKeysLock(&tr, lock, ddEnabledState)); TraceEvent("RemoveKeysFromFailedServerLocked") .detail("ServerID", serverID) .detail("Version", tr.getReadVersion().get()) .detail("Begin", begin); // Get all values of keyServers and remove serverID from every occurrence // Very inefficient going over every entry in keyServers // No shortcut because keyServers and serverKeys are not guaranteed same shard boundaries state Standalone<RangeResultRef> UIDtoTagMap = wait( tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY) ); ASSERT( !UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY ); state Standalone<RangeResultRef> keyServers = wait(krmGetRanges(&tr, keyServersPrefix, KeyRangeRef(begin, allKeys.end), SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT, SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES)); state KeyRange currentKeys = KeyRangeRef(begin, keyServers.end()[-1].key); for (int i = 0; i < keyServers.size() - 1; ++i) { auto it = keyServers[i]; vector<UID> src; vector<UID> dest; decodeKeyServersValue(UIDtoTagMap, it.value, src, dest); // The failed server is not present if (std::find(src.begin(), src.end(), serverID) == src.end() && std::find(dest.begin(), dest.end(), serverID) == dest.end()) { continue; } // Update the vectors to remove failed server then set the value again // Dest is usually empty, but keep this in case there is parallel data movement src.erase(std::remove(src.begin(), src.end(), serverID), src.end()); dest.erase(std::remove(dest.begin(), dest.end(), serverID), dest.end()); TraceEvent(SevDebug, "FailedServerSetKey", serverID) .detail("Key", it.key) .detail("ValueSrc", describe(src)) .detail("ValueDest", describe(dest)); tr.set(keyServersKey(it.key), keyServersValue(UIDtoTagMap, src, dest)); } // Set entire range for our serverID in serverKeys keyspace to false to signal erasure TraceEvent(SevDebug, "FailedServerSetRange", serverID) .detail("Begin", currentKeys.begin) .detail("End", currentKeys.end); wait(krmSetRangeCoalescing(&tr, serverKeysPrefixFor(serverID), currentKeys, allKeys, serverKeysFalse)); wait(tr.commit()); TraceEvent(SevDebug, "FailedServerCommitSuccess", serverID) .detail("Begin", currentKeys.begin) .detail("End", currentKeys.end) .detail("CommitVersion", tr.getCommittedVersion()); // Update beginning of next iteration's range begin = currentKeys.end; break; } catch (Error& e) { TraceEvent("FailedServerError", serverID).error(e); wait(tr.onError(e)); } } } return Void(); } ACTOR Future<Void> moveKeys(Database cx, KeyRange keys, vector<UID> destinationTeam, vector<UID> healthyDestinations, MoveKeysLock lock, Promise<Void> dataMovementComplete, FlowLock* startMoveKeysParallelismLock, FlowLock* finishMoveKeysParallelismLock, bool hasRemote, UID relocationIntervalId, const DDEnabledState* ddEnabledState) { ASSERT( destinationTeam.size() ); std::sort( destinationTeam.begin(), destinationTeam.end() ); wait(startMoveKeys(cx, keys, destinationTeam, lock, startMoveKeysParallelismLock, relocationIntervalId, ddEnabledState)); state Future<Void> completionSignaller = checkFetchingState( cx, healthyDestinations, keys, dataMovementComplete, relocationIntervalId ); wait(finishMoveKeys(cx, keys, destinationTeam, lock, finishMoveKeysParallelismLock, hasRemote, relocationIntervalId, ddEnabledState)); //This is defensive, but make sure that we always say that the movement is complete before moveKeys completes completionSignaller.cancel(); if(!dataMovementComplete.isSet()) dataMovementComplete.send(Void()); return Void(); } void seedShardServers( Arena& arena, CommitTransactionRef &tr, vector<StorageServerInterface> servers ) { std::map<Optional<Value>, Tag> dcId_locality; std::map<UID, Tag> server_tag; int8_t nextLocality = 0; for(auto& s : servers) { if(!dcId_locality.count(s.locality.dcId())) { tr.set(arena, tagLocalityListKeyFor(s.locality.dcId()), tagLocalityListValue(nextLocality)); dcId_locality[s.locality.dcId()] = Tag(nextLocality, 0); nextLocality++; } Tag& t = dcId_locality[s.locality.dcId()]; server_tag[s.id()] = Tag(t.locality, t.id); t.id++; } std::sort(servers.begin(), servers.end()); // This isn't strictly necessary, but make sure this is the first transaction tr.read_snapshot = 0; tr.read_conflict_ranges.push_back_deep( arena, allKeys ); for(int s=0; s<servers.size(); s++) { tr.set(arena, serverTagKeyFor(servers[s].id()), serverTagValue(server_tag[servers[s].id()])); tr.set(arena, serverListKeyFor(servers[s].id()), serverListValue(servers[s])); } std::vector<Tag> serverTags; for(int i=0;i<servers.size();i++) serverTags.push_back(server_tag[servers[i].id()]); // We have to set this range in two blocks, because the master tracking of "keyServersLocations" depends on a change to a specific // key (keyServersKeyServersKey) krmSetPreviouslyEmptyRange( tr, arena, keyServersPrefix, KeyRangeRef(KeyRef(), allKeys.end), keyServersValue( serverTags ), Value() ); for(int s=0; s<servers.size(); s++) krmSetPreviouslyEmptyRange( tr, arena, serverKeysPrefixFor( servers[s].id() ), allKeys, serverKeysTrue, serverKeysFalse ); }