/* * TLogServer.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2018 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flow/Hash3.h" #include "flow/UnitTest.h" #include "fdbclient/NativeAPI.actor.h" #include "fdbclient/Notified.h" #include "fdbclient/KeyRangeMap.h" #include "fdbclient/RunTransaction.actor.h" #include "fdbclient/SystemData.h" #include "fdbclient/FDBTypes.h" #include "fdbserver/WorkerInterface.actor.h" #include "fdbserver/LogProtocolMessage.h" #include "fdbserver/TLogInterface.h" #include "fdbserver/Knobs.h" #include "fdbserver/IKeyValueStore.h" #include "fdbserver/MutationTracking.h" #include "flow/ActorCollection.h" #include "fdbrpc/FailureMonitor.h" #include "fdbserver/IDiskQueue.h" #include "fdbrpc/sim_validation.h" #include "fdbrpc/simulator.h" #include "fdbrpc/Stats.h" #include "fdbserver/ServerDBInfo.h" #include "fdbserver/LogSystem.h" #include "fdbserver/WaitFailure.h" #include "fdbserver/RecoveryState.h" #include "fdbserver/FDBExecHelper.actor.h" #include "flow/actorcompiler.h" // This must be the last #include. using std::pair; using std::make_pair; using std::min; using std::max; struct TLogQueueEntryRef { UID id; Version version; Version knownCommittedVersion; StringRef messages; TLogQueueEntryRef() : version(0), knownCommittedVersion(0) {} TLogQueueEntryRef(Arena &a, TLogQueueEntryRef const &from) : version(from.version), knownCommittedVersion(from.knownCommittedVersion), id(from.id), messages(a, from.messages) { } //To change this serialization, ProtocolVersion::TLogQueueEntryRef must be updated, and downgrades need to be considered template void serialize(Ar& ar) { serializer(ar, version, messages, knownCommittedVersion, id); } size_t expectedSize() const { return messages.expectedSize(); } }; struct AlternativeTLogQueueEntryRef { UID id; Version version; Version knownCommittedVersion; std::vector* alternativeMessages; AlternativeTLogQueueEntryRef() : version(0), knownCommittedVersion(0), alternativeMessages(NULL) {} template void serialize(Ar& ar) { ASSERT(!ar.isDeserializing && alternativeMessages); uint32_t msgSize = expectedSize(); serializer(ar, version, msgSize); for(auto& msg : *alternativeMessages) { ar.serializeBytes( msg.message ); } serializer(ar, knownCommittedVersion, id); } uint32_t expectedSize() const { uint32_t msgSize = 0; for(auto& msg : *alternativeMessages) { msgSize += msg.message.size(); } return msgSize; } }; typedef Standalone TLogQueueEntry; struct LogData; struct TLogData; struct TLogQueue : public IClosable { public: TLogQueue( IDiskQueue* queue, UID dbgid ) : queue(queue), dbgid(dbgid) {} // Each packet in the queue is // uint32_t payloadSize // uint8_t payload[payloadSize] (begins with uint64_t protocolVersion via IncludeVersion) // uint8_t validFlag // TLogQueue is a durable queue of TLogQueueEntry objects with an interface similar to IDiskQueue // TLogQueue pushes (but not commits) are atomic - after commit fails to return, a prefix of entire calls to push are durable. This is // implemented on top of the weaker guarantee of IDiskQueue::commit (that a prefix of bytes is durable) using validFlag and by // padding any incomplete packet with zeros after recovery. // Before calling push, pop, or commit, the user must call readNext() until it throws // end_of_stream(). It may not be called again thereafter. Future readNext( TLogData* tLog ) { return readNext( this, tLog ); } Future initializeRecovery( IDiskQueue::location recoverAt ) { return queue->initializeRecovery( recoverAt ); } template void push( T const& qe, Reference logData ); void forgetBefore( Version upToVersion, Reference logData ); void pop( IDiskQueue::location upToLocation ); Future commit() { return queue->commit(); } // Implements IClosable virtual Future getError() { return queue->getError(); } virtual Future onClosed() { return queue->onClosed(); } virtual void dispose() { queue->dispose(); delete this; } virtual void close() { queue->close(); delete this; } private: IDiskQueue* queue; UID dbgid; void updateVersionSizes( const TLogQueueEntry& result, TLogData* tLog, IDiskQueue::location start, IDiskQueue::location end ); ACTOR static Future readNext( TLogQueue* self, TLogData* tLog ) { state TLogQueueEntry result; state int zeroFillSize = 0; loop { state IDiskQueue::location startloc = self->queue->getNextReadLocation(); Standalone h = wait( self->queue->readNext( sizeof(uint32_t) ) ); if (h.size() != sizeof(uint32_t)) { if (h.size()) { TEST( true ); // Zero fill within size field int payloadSize = 0; memcpy(&payloadSize, h.begin(), h.size()); zeroFillSize = sizeof(uint32_t)-h.size(); // zero fill the size itself zeroFillSize += payloadSize+1; // and then the contents and valid flag } break; } state uint32_t payloadSize = *(uint32_t*)h.begin(); ASSERT( payloadSize < (100<<20) ); Standalone e = wait( self->queue->readNext( payloadSize+1 ) ); if (e.size() != payloadSize+1) { TEST( true ); // Zero fill within payload zeroFillSize = payloadSize+1 - e.size(); break; } if (e[payloadSize]) { ASSERT( e[payloadSize] == 1 ); Arena a = e.arena(); ArenaReader ar( a, e.substr(0, payloadSize), IncludeVersion() ); ar >> result; const IDiskQueue::location endloc = self->queue->getNextReadLocation(); self->updateVersionSizes(result, tLog, startloc, endloc); return result; } } if (zeroFillSize) { TEST( true ); // Fixing a partial commit at the end of the tlog queue for(int i=0; iqueue->push( StringRef((const uint8_t*)"",1) ); } throw end_of_stream(); } }; ////// Persistence format (for self->persistentData) // Immutable keys // persistFormat has been mostly invalidated by TLogVersion, and can probably be removed when // 4.6's TLog code is removed. static const KeyValueRef persistFormat( LiteralStringRef( "Format" ), LiteralStringRef("FoundationDB/LogServer/3/0") ); static const KeyRangeRef persistFormatReadableRange( LiteralStringRef("FoundationDB/LogServer/3/0"), LiteralStringRef("FoundationDB/LogServer/4/0") ); static const KeyRangeRef persistProtocolVersionKeys( LiteralStringRef( "ProtocolVersion/" ), LiteralStringRef( "ProtocolVersion0" ) ); static const KeyRangeRef persistTLogSpillTypeKeys( LiteralStringRef( "TLogSpillType/" ), LiteralStringRef( "TLogSpillType0" ) ); static const KeyRangeRef persistRecoveryCountKeys = KeyRangeRef( LiteralStringRef( "DbRecoveryCount/" ), LiteralStringRef( "DbRecoveryCount0" ) ); // Updated on updatePersistentData() static const KeyRangeRef persistCurrentVersionKeys = KeyRangeRef( LiteralStringRef( "version/" ), LiteralStringRef( "version0" ) ); static const KeyRangeRef persistKnownCommittedVersionKeys = KeyRangeRef( LiteralStringRef( "knownCommitted/" ), LiteralStringRef( "knownCommitted0" ) ); static const KeyRef persistRecoveryLocationKey = KeyRef( LiteralStringRef( "recoveryLocation" ) ); static const KeyRangeRef persistLocalityKeys = KeyRangeRef( LiteralStringRef( "Locality/" ), LiteralStringRef( "Locality0" ) ); static const KeyRangeRef persistLogRouterTagsKeys = KeyRangeRef( LiteralStringRef( "LogRouterTags/" ), LiteralStringRef( "LogRouterTags0" ) ); static const KeyRangeRef persistTxsTagsKeys = KeyRangeRef( LiteralStringRef( "TxsTags/" ), LiteralStringRef( "TxsTags0" ) ); static const KeyRange persistTagMessagesKeys = prefixRange(LiteralStringRef("TagMsg/")); static const KeyRange persistTagMessageRefsKeys = prefixRange(LiteralStringRef("TagMsgRef/")); static const KeyRange persistTagPoppedKeys = prefixRange(LiteralStringRef("TagPop/")); static Key persistTagMessagesKey( UID id, Tag tag, Version version ) { BinaryWriter wr( Unversioned() ); wr.serializeBytes(persistTagMessagesKeys.begin); wr << id; wr << tag; wr << bigEndian64( version ); return wr.toValue(); } static Key persistTagMessageRefsKey( UID id, Tag tag, Version version ) { BinaryWriter wr( Unversioned() ); wr.serializeBytes(persistTagMessageRefsKeys.begin); wr << id; wr << tag; wr << bigEndian64( version ); return wr.toValue(); } static Key persistTagPoppedKey( UID id, Tag tag ) { BinaryWriter wr(Unversioned()); wr.serializeBytes( persistTagPoppedKeys.begin ); wr << id; wr << tag; return wr.toValue(); } static Value persistTagPoppedValue( Version popped ) { return BinaryWriter::toValue( popped, Unversioned() ); } static Tag decodeTagPoppedKey( KeyRef id, KeyRef key ) { Tag s; BinaryReader rd( key.removePrefix(persistTagPoppedKeys.begin).removePrefix(id), Unversioned() ); rd >> s; return s; } static Version decodeTagPoppedValue( ValueRef value ) { return BinaryReader::fromStringRef( value, Unversioned() ); } static StringRef stripTagMessagesKey( StringRef key ) { return key.substr( sizeof(UID) + sizeof(Tag) + persistTagMessagesKeys.begin.size() ); } static Version decodeTagMessagesKey( StringRef key ) { return bigEndian64( BinaryReader::fromStringRef( stripTagMessagesKey(key), Unversioned() ) ); } struct SpilledData { SpilledData() = default; SpilledData(Version version, IDiskQueue::location start, uint32_t length, uint32_t mutationBytes) : version(version), start(start), length(length), mutationBytes(mutationBytes) { } template void serialize(Ar& ar) { serializer(ar, version, start, length, mutationBytes); } Version version = 0; IDiskQueue::location start = 0; uint32_t length = 0; uint32_t mutationBytes = 0; }; struct TLogData : NonCopyable { AsyncTrigger newLogData; // A process has only 1 SharedTLog, which holds data for multiple logs, so that it obeys its assigned memory limit. // A process has only 1 active log and multiple non-active log from old generations. // In the figure below, TLog [1-4] are logs from old generations. // Because SS may need to pull data from old generation log, we keep Tlog [1-4]. // // We always pop the disk queue from the oldest TLog, spill from the oldest TLog that still has // data in memory, and commits to the disk queue come from the most recent TLog. // // SharedTLog // +--------+--------+--------+--------+--------+ // | TLog 1 | TLog 2 | TLog 3 | TLog 4 | TLog 5 | // +--------+--------+--------+--------+--------+ // ^ popOrder ^spillOrder ^committing // // ^popOrder is the location where SS reads the to-be-read data from tlog. // ^committing is the location where the active TLog accepts the pushed data. Deque popOrder; Deque spillOrder; std::map> id_data; UID dbgid; UID workerID; IKeyValueStore* persistentData; // Durable data on disk that were spilled. IDiskQueue* rawPersistentQueue; // The physical queue the persistentQueue below stores its data. Ideally, log interface should work without directly accessing rawPersistentQueue TLogQueue *persistentQueue; // Logical queue the log operates on and persist its data. int64_t diskQueueCommitBytes; AsyncVar largeDiskQueueCommitBytes; //becomes true when diskQueueCommitBytes is greater than MAX_QUEUE_COMMIT_BYTES Reference> dbInfo; Database cx; NotifiedVersion queueCommitEnd; Version queueCommitBegin; int64_t instanceID; int64_t bytesInput; int64_t bytesDurable; int64_t targetVolatileBytes; // The number of bytes of mutations this TLog should hold in memory before spilling. int64_t overheadBytesInput; int64_t overheadBytesDurable; WorkerCache tlogCache; FlowLock peekMemoryLimiter; PromiseStream> sharedActors; Promise terminated; FlowLock concurrentLogRouterReads; FlowLock persistentDataCommitLock; bool ignorePopRequest; // ignore pop request from storage servers double ignorePopDeadline; // time until which the ignorePopRequest will be // honored std::string ignorePopUid; // callers that set ignorePopRequest will set this // extra state, used to validate the ownership of // the set and for callers that unset will // be able to match it up std::string dataFolder; // folder where data is stored std::map toBePopped; // map of Tag->Version for all the pops // that came when ignorePopRequest was set Reference> degraded; std::vector tempTagMessages; TLogData(UID dbgid, UID workerID, IKeyValueStore* persistentData, IDiskQueue * persistentQueue, Reference> dbInfo, Reference> degraded, std::string folder) : dbgid(dbgid), workerID(workerID), instanceID(deterministicRandom()->randomUniqueID().first()), persistentData(persistentData), rawPersistentQueue(persistentQueue), persistentQueue(new TLogQueue(persistentQueue, dbgid)), dbInfo(dbInfo), degraded(degraded), queueCommitBegin(0), queueCommitEnd(0), diskQueueCommitBytes(0), largeDiskQueueCommitBytes(false), bytesInput(0), bytesDurable(0), targetVolatileBytes(SERVER_KNOBS->TLOG_SPILL_THRESHOLD), overheadBytesInput(0), overheadBytesDurable(0), peekMemoryLimiter(SERVER_KNOBS->TLOG_SPILL_REFERENCE_MAX_PEEK_MEMORY_BYTES), concurrentLogRouterReads(SERVER_KNOBS->CONCURRENT_LOG_ROUTER_READS), ignorePopRequest(false), ignorePopDeadline(), ignorePopUid(), dataFolder(folder), toBePopped() { cx = openDBOnServer(dbInfo, TaskPriority::DefaultEndpoint, true, true); } }; struct LogData : NonCopyable, public ReferenceCounted { struct TagData : NonCopyable, public ReferenceCounted { std::deque> versionMessages; bool nothingPersistent; // true means tag is *known* to have no messages in persistentData. false means nothing. bool poppedRecently; // `popped` has changed since last updatePersistentData Version popped; // see popped version tracking contract below Version persistentPopped; // The popped version recorded in the btree. Version versionForPoppedLocation; // `poppedLocation` was calculated at this popped version IDiskQueue::location poppedLocation; // The location of the earliest commit with data for this tag. bool unpoppedRecovered; Tag tag; TagData( Tag tag, Version popped, IDiskQueue::location poppedLocation, bool nothingPersistent, bool poppedRecently, bool unpoppedRecovered ) : tag(tag), nothingPersistent(nothingPersistent), poppedRecently(poppedRecently), popped(popped), persistentPopped(0), versionForPoppedLocation(0), poppedLocation(poppedLocation), unpoppedRecovered(unpoppedRecovered) {} TagData(TagData&& r) noexcept : versionMessages(std::move(r.versionMessages)), nothingPersistent(r.nothingPersistent), poppedRecently(r.poppedRecently), popped(r.popped), persistentPopped(r.persistentPopped), versionForPoppedLocation(r.versionForPoppedLocation), poppedLocation(r.poppedLocation), tag(r.tag), unpoppedRecovered(r.unpoppedRecovered) {} void operator=(TagData&& r) noexcept { versionMessages = std::move(r.versionMessages); nothingPersistent = r.nothingPersistent; poppedRecently = r.poppedRecently; popped = r.popped; persistentPopped = r.persistentPopped; versionForPoppedLocation = r.versionForPoppedLocation; poppedLocation = r.poppedLocation; tag = r.tag; unpoppedRecovered = r.unpoppedRecovered; } // Erase messages not needed to update *from* versions >= before (thus, messages with toversion <= before) ACTOR Future eraseMessagesBefore( TagData *self, Version before, TLogData *tlogData, Reference logData, TaskPriority taskID ) { while(!self->versionMessages.empty() && self->versionMessages.front().first < before) { Version version = self->versionMessages.front().first; std::pair &sizes = logData->version_sizes[version]; int64_t messagesErased = 0; while(!self->versionMessages.empty() && self->versionMessages.front().first == version) { auto const& m = self->versionMessages.front(); ++messagesErased; if(self->tag.locality != tagLocalityTxs && self->tag != txsTag) { sizes.first -= m.second.expectedSize(); } else { sizes.second -= m.second.expectedSize(); } self->versionMessages.pop_front(); } int64_t bytesErased = messagesErased * SERVER_KNOBS->VERSION_MESSAGES_ENTRY_BYTES_WITH_OVERHEAD; logData->bytesDurable += bytesErased; tlogData->bytesDurable += bytesErased; tlogData->overheadBytesDurable += bytesErased; wait(yield(taskID)); } return Void(); } Future eraseMessagesBefore(Version before, TLogData *tlogData, Reference logData, TaskPriority taskID) { return eraseMessagesBefore(this, before, tlogData, logData, taskID); } }; Map> versionLocation; // For the version of each entry that was push()ed, the [start, end) location of the serialized bytes /* Popped version tracking contract needed by log system to implement ILogCursor::popped(): - Log server tracks for each (possible) tag a popped_version Impl: TagData::popped (in memory) and persistTagPoppedKeys (in persistentData) - popped_version(tag) is <= the maximum version for which log server (or a predecessor) is ever asked to pop the tag Impl: Only increased by tLogPop() in response to either a pop request or recovery from a predecessor - popped_version(tag) is > the maximum version for which log server is unable to peek messages due to previous pops (on this server or a predecessor) Impl: Increased by tLogPop() atomically with erasing messages from memory; persisted by updatePersistentData() atomically with erasing messages from store; messages are not erased from queue where popped_version is not persisted - LockTLogReply returns all tags which either have messages, or which have nonzero popped_versions Impl: tag_data is present for all such tags - peek(tag, v) returns the popped_version for tag if that is greater than v Impl: Check tag_data->popped (after all waits) */ AsyncTrigger stopCommit; bool stopped, initialized; DBRecoveryCount recoveryCount; VersionMetricHandle persistentDataVersion, persistentDataDurableVersion; // The last version number in the portion of the log (written|durable) to persistentData NotifiedVersion version, queueCommittedVersion; Version queueCommittingVersion; Version knownCommittedVersion, durableKnownCommittedVersion, minKnownCommittedVersion; Version queuePoppedVersion; Version minPoppedTagVersion; Tag minPoppedTag; Deque>>> messageBlocks; std::vector>> tag_data; //tag.locality | tag.id int unpoppedRecoveredTags; Reference getTagData(Tag tag) { int idx = tag.toTagDataIndex(); if(idx >= tag_data.size()) { tag_data.resize(idx+1); } if(tag.id >= tag_data[idx].size()) { tag_data[idx].resize(tag.id+1); } return tag_data[idx][tag.id]; } //only callable after getTagData returns a null reference Reference createTagData(Tag tag, Version popped, bool nothingPersistent, bool poppedRecently, bool unpoppedRecovered) { if(tag.locality != tagLocalityLogRouter && tag.locality != tagLocalityTxs && tag != txsTag && allTags.size() && !allTags.count(tag) && popped <= recoveredAt) { popped = recoveredAt + 1; } Reference newTagData = Reference( new TagData(tag, popped, 0, nothingPersistent, poppedRecently, unpoppedRecovered) ); tag_data[tag.toTagDataIndex()][tag.id] = newTagData; return newTagData; } Map> version_sizes; CounterCollection cc; Counter bytesInput; Counter bytesDurable; UID logId; ProtocolVersion protocolVersion; Version newPersistentDataVersion; Future removed; PromiseStream> addActor; TLogData* tLogData; Promise recoveryComplete, committingQueue; Version unrecoveredBefore, recoveredAt; struct PeekTrackerData { std::map>> sequence_version; double lastUpdate; Tag tag; double lastLogged; int64_t totalPeeks; int64_t replyBytes; int64_t duplicatePeeks; double queueTime; double queueMax; double blockTime; double blockMax; double workTime; double workMax; int64_t unblockedPeeks; double idleTime; double idleMax; PeekTrackerData() : lastUpdate(0) { resetMetrics(); } void resetMetrics() { lastLogged = now(); totalPeeks = 0; replyBytes = 0; duplicatePeeks = 0; queueTime = 0; queueMax = 0; blockTime = 0; blockMax = 0; workTime = 0; workMax = 0; unblockedPeeks = 0; idleTime = 0; idleMax = 0; } }; std::map peekTracker; Reference>> logSystem; Tag remoteTag; bool isPrimary; int logRouterTags; Version logRouterPoppedVersion, logRouterPopToVersion; int8_t locality; UID recruitmentID; TLogSpillType logSpillType; std::set allTags; Future terminated; FlowLock execOpLock; bool execOpCommitInProgress; int txsTags; explicit LogData(TLogData* tLogData, TLogInterface interf, Tag remoteTag, bool isPrimary, int logRouterTags, int txsTags, UID recruitmentID, ProtocolVersion protocolVersion, TLogSpillType logSpillType, std::vector tags, std::string context) : tLogData(tLogData), knownCommittedVersion(0), logId(interf.id()), cc("TLog", interf.id().toString()), bytesInput("BytesInput", cc), bytesDurable("BytesDurable", cc), remoteTag(remoteTag), isPrimary(isPrimary), logRouterTags(logRouterTags), txsTags(txsTags), recruitmentID(recruitmentID), protocolVersion(protocolVersion), logSpillType(logSpillType), logSystem(new AsyncVar>()), logRouterPoppedVersion(0), durableKnownCommittedVersion(0), minKnownCommittedVersion(0), queuePoppedVersion(0), allTags(tags.begin(), tags.end()), terminated(tLogData->terminated.getFuture()), minPoppedTagVersion(0), minPoppedTag(invalidTag), // These are initialized differently on init() or recovery recoveryCount(), stopped(false), initialized(false), queueCommittingVersion(0), newPersistentDataVersion(invalidVersion), unrecoveredBefore(1), recoveredAt(1), unpoppedRecoveredTags(0), logRouterPopToVersion(0), locality(tagLocalityInvalid), execOpCommitInProgress(false) { startRole(Role::TRANSACTION_LOG, interf.id(), tLogData->workerID, {{"SharedTLog", tLogData->dbgid.shortString()}}, context); addActor.send(traceRole(Role::TRANSACTION_LOG, interf.id())); persistentDataVersion.init(LiteralStringRef("TLog.PersistentDataVersion"), cc.id); persistentDataDurableVersion.init(LiteralStringRef("TLog.PersistentDataDurableVersion"), cc.id); version.initMetric(LiteralStringRef("TLog.Version"), cc.id); queueCommittedVersion.initMetric(LiteralStringRef("TLog.QueueCommittedVersion"), cc.id); specialCounter(cc, "Version", [this](){ return this->version.get(); }); specialCounter(cc, "QueueCommittedVersion", [this](){ return this->queueCommittedVersion.get(); }); specialCounter(cc, "PersistentDataVersion", [this](){ return this->persistentDataVersion; }); specialCounter(cc, "PersistentDataDurableVersion", [this](){ return this->persistentDataDurableVersion; }); specialCounter(cc, "KnownCommittedVersion", [this](){ return this->knownCommittedVersion; }); specialCounter(cc, "QueuePoppedVersion", [this](){ return this->queuePoppedVersion; }); specialCounter(cc, "MinPoppedTagVersion", [this](){ return this->minPoppedTagVersion; }); specialCounter(cc, "MinPoppedTagLocality", [this](){ return this->minPoppedTag.locality; }); specialCounter(cc, "MinPoppedTagId", [this](){ return this->minPoppedTag.id; }); specialCounter(cc, "SharedBytesInput", [tLogData](){ return tLogData->bytesInput; }); specialCounter(cc, "SharedBytesDurable", [tLogData](){ return tLogData->bytesDurable; }); specialCounter(cc, "SharedOverheadBytesInput", [tLogData](){ return tLogData->overheadBytesInput; }); specialCounter(cc, "SharedOverheadBytesDurable", [tLogData](){ return tLogData->overheadBytesDurable; }); specialCounter(cc, "KvstoreBytesUsed", [tLogData](){ return tLogData->persistentData->getStorageBytes().used; }); specialCounter(cc, "KvstoreBytesFree", [tLogData](){ return tLogData->persistentData->getStorageBytes().free; }); specialCounter(cc, "KvstoreBytesAvailable", [tLogData](){ return tLogData->persistentData->getStorageBytes().available; }); specialCounter(cc, "KvstoreBytesTotal", [tLogData](){ return tLogData->persistentData->getStorageBytes().total; }); specialCounter(cc, "QueueDiskBytesUsed", [tLogData](){ return tLogData->rawPersistentQueue->getStorageBytes().used; }); specialCounter(cc, "QueueDiskBytesFree", [tLogData](){ return tLogData->rawPersistentQueue->getStorageBytes().free; }); specialCounter(cc, "QueueDiskBytesAvailable", [tLogData](){ return tLogData->rawPersistentQueue->getStorageBytes().available; }); specialCounter(cc, "QueueDiskBytesTotal", [tLogData](){ return tLogData->rawPersistentQueue->getStorageBytes().total; }); specialCounter(cc, "PeekMemoryReserved", [tLogData]() { return tLogData->peekMemoryLimiter.activePermits(); }); specialCounter(cc, "PeekMemoryRequestsStalled", [tLogData]() { return tLogData->peekMemoryLimiter.waiters(); }); } ~LogData() { endRole(Role::TRANSACTION_LOG, logId, "Error", true); if(!terminated.isReady()) { tLogData->bytesDurable += bytesInput.getValue() - bytesDurable.getValue(); TraceEvent("TLogBytesWhenRemoved", logId).detail("SharedBytesInput", tLogData->bytesInput).detail("SharedBytesDurable", tLogData->bytesDurable).detail("LocalBytesInput", bytesInput.getValue()).detail("LocalBytesDurable", bytesDurable.getValue()); ASSERT_ABORT(tLogData->bytesDurable <= tLogData->bytesInput); Key logIdKey = BinaryWriter::toValue(logId,Unversioned()); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistCurrentVersionKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistKnownCommittedVersionKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistLocalityKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistLogRouterTagsKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistTxsTagsKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistRecoveryCountKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistProtocolVersionKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistTLogSpillTypeKeys.begin)) ); tLogData->persistentData->clear( singleKeyRange(logIdKey.withPrefix(persistRecoveryLocationKey)) ); Key msgKey = logIdKey.withPrefix(persistTagMessagesKeys.begin); tLogData->persistentData->clear( KeyRangeRef( msgKey, strinc(msgKey) ) ); Key msgRefKey = logIdKey.withPrefix(persistTagMessageRefsKeys.begin); tLogData->persistentData->clear( KeyRangeRef( msgRefKey, strinc(msgRefKey) ) ); Key poppedKey = logIdKey.withPrefix(persistTagPoppedKeys.begin); tLogData->persistentData->clear( KeyRangeRef( poppedKey, strinc(poppedKey) ) ); } for ( auto it = peekTracker.begin(); it != peekTracker.end(); ++it ) { for(auto seq : it->second.sequence_version) { if(!seq.second.isSet()) { seq.second.sendError(timed_out()); } } } } LogEpoch epoch() const { return recoveryCount; } bool shouldSpillByValue( Tag t ) const { switch (logSpillType) { case TLogSpillType::VALUE: return true; case TLogSpillType::REFERENCE: return t.locality == tagLocalityTxs || t == txsTag; default: ASSERT(false); return false; } } bool shouldSpillByReference( Tag t ) const { return !shouldSpillByValue( t ); } }; template void TLogQueue::push( T const& qe, Reference logData ) { BinaryWriter wr( Unversioned() ); // outer framing is not versioned wr << uint32_t(0); IncludeVersion(ProtocolVersion::withTLogQueueEntryRef()).write(wr); // payload is versioned wr << qe; wr << uint8_t(1); *(uint32_t*)wr.getData() = wr.getLength() - sizeof(uint32_t) - sizeof(uint8_t); const IDiskQueue::location startloc = queue->getNextPushLocation(); // FIXME: push shouldn't return anything. We should call getNextPushLocation() again. const IDiskQueue::location endloc = queue->push( wr.toValue() ); //TraceEvent("TLogQueueVersionWritten", dbgid).detail("Size", wr.getLength() - sizeof(uint32_t) - sizeof(uint8_t)).detail("Loc", loc); logData->versionLocation[qe.version] = std::make_pair(startloc, endloc); } void TLogQueue::forgetBefore( Version upToVersion, Reference logData ) { // Keep only the given and all subsequent version numbers // Find the first version >= upTo auto v = logData->versionLocation.lower_bound(upToVersion); if (v == logData->versionLocation.begin()) return; if(v == logData->versionLocation.end()) { v = logData->versionLocation.lastItem(); } else { v.decrementNonEnd(); } logData->versionLocation.erase( logData->versionLocation.begin(), v ); // ... and then we erase that previous version and all prior versions } void TLogQueue::pop( IDiskQueue::location upToLocation ) { queue->pop( upToLocation ); } void TLogQueue::updateVersionSizes( const TLogQueueEntry& result, TLogData* tLog, IDiskQueue::location start, IDiskQueue::location end) { auto it = tLog->id_data.find(result.id); if(it != tLog->id_data.end()) { it->second->versionLocation[result.version] = std::make_pair(start, end); } } ACTOR Future tLogLock( TLogData* self, ReplyPromise< TLogLockResult > reply, Reference logData ) { state Version stopVersion = logData->version.get(); TEST(true); // TLog stopped by recovering master TEST( logData->stopped ); TEST( !logData->stopped ); TraceEvent("TLogStop", logData->logId).detail("Ver", stopVersion).detail("IsStopped", logData->stopped).detail("QueueCommitted", logData->queueCommittedVersion.get()); logData->stopped = true; if(!logData->recoveryComplete.isSet()) { logData->recoveryComplete.sendError(end_of_stream()); } // Lock once the current version has been committed wait( logData->queueCommittedVersion.whenAtLeast( stopVersion ) ); ASSERT(stopVersion == logData->version.get()); TLogLockResult result; result.end = stopVersion; result.knownCommittedVersion = logData->knownCommittedVersion; TraceEvent("TLogStop2", self->dbgid).detail("LogId", logData->logId).detail("Ver", stopVersion).detail("IsStopped", logData->stopped).detail("QueueCommitted", logData->queueCommittedVersion.get()).detail("KnownCommitted", result.knownCommittedVersion); reply.send( result ); return Void(); } void updatePersistentPopped( TLogData* self, Reference logData, Reference data ) { if (!data->poppedRecently) return; self->persistentData->set(KeyValueRef( persistTagPoppedKey(logData->logId, data->tag), persistTagPoppedValue(data->popped) )); data->poppedRecently = false; data->persistentPopped = data->popped; if (data->nothingPersistent) return; if (logData->shouldSpillByValue(data->tag)) { self->persistentData->clear( KeyRangeRef( persistTagMessagesKey( logData->logId, data->tag, Version(0) ), persistTagMessagesKey( logData->logId, data->tag, data->popped ) ) ); } else { self->persistentData->clear( KeyRangeRef( persistTagMessageRefsKey( logData->logId, data->tag, Version(0) ), persistTagMessageRefsKey( logData->logId, data->tag, data->popped ) ) ); } if (data->popped > logData->persistentDataVersion) { data->nothingPersistent = true; } } ACTOR Future updatePoppedLocation( TLogData* self, Reference logData, Reference data ) { // For anything spilled by value, we do not need to track its popped location. if (logData->shouldSpillByValue(data->tag)) { return Void(); } if (data->versionForPoppedLocation >= data->persistentPopped) return Void(); data->versionForPoppedLocation = data->persistentPopped; // Use persistentPopped and not popped, so that a pop update received after spilling doesn't cause // us to remove data that still is pointed to by SpilledData in the btree. if (data->persistentPopped <= logData->persistentDataVersion) { // Recover the next needed location in the Disk Queue from the index. Standalone kvrefs = wait( self->persistentData->readRange(KeyRangeRef( persistTagMessageRefsKey(logData->logId, data->tag, data->persistentPopped), persistTagMessageRefsKey(logData->logId, data->tag, logData->persistentDataVersion + 1)), 1)); if (kvrefs.empty()) { // Nothing was persistent after all. data->nothingPersistent = true; } else { VectorRef spilledData; BinaryReader r(kvrefs[0].value, AssumeVersion(logData->protocolVersion)); r >> spilledData; for (const SpilledData& sd : spilledData) { if (sd.version >= data->persistentPopped) { data->poppedLocation = sd.start; data->versionForPoppedLocation = sd.version; break; } } } } if (data->persistentPopped >= logData->persistentDataVersion || data->nothingPersistent) { // Then the location must be in memory. auto locationIter = logData->versionLocation.lower_bound(data->persistentPopped); if (locationIter != logData->versionLocation.end()) { data->poppedLocation = locationIter->value.first; data->versionForPoppedLocation = locationIter->key; } else { // No data on disk and no data in RAM. // This TLog instance will be removed soon anyway, so we temporarily freeze our poppedLocation // to avoid trying to track what the ending location of this TLog instance was. } } return Void(); } ACTOR Future popDiskQueue( TLogData* self, Reference logData ) { if (!logData->initialized) return Void(); std::vector> updates; for(int tagLocality = 0; tagLocality < logData->tag_data.size(); tagLocality++) { for(int tagId = 0; tagId < logData->tag_data[tagLocality].size(); tagId++) { Reference tagData = logData->tag_data[tagLocality][tagId]; if (tagData) { updates.push_back( updatePoppedLocation( self, logData, tagData ) ); } } } wait(waitForAll(updates)); IDiskQueue::location minLocation = 0; Version minVersion = 0; auto locationIter = logData->versionLocation.lower_bound(logData->persistentDataVersion); if (locationIter != logData->versionLocation.end()) { minLocation = locationIter->value.first; minVersion = locationIter->key; } logData->minPoppedTagVersion = std::numeric_limits::max(); for(int tagLocality = 0; tagLocality < logData->tag_data.size(); tagLocality++) { for(int tagId = 0; tagId < logData->tag_data[tagLocality].size(); tagId++) { Reference tagData = logData->tag_data[tagLocality][tagId]; if (tagData && logData->shouldSpillByReference(tagData->tag)) { if(!tagData->nothingPersistent) { minLocation = std::min(minLocation, tagData->poppedLocation); minVersion = std::min(minVersion, tagData->popped); } if((!tagData->nothingPersistent || tagData->versionMessages.size()) && tagData->popped < logData->minPoppedTagVersion) { logData->minPoppedTagVersion = tagData->popped; logData->minPoppedTag = tagData->tag; } } } } if( self->queueCommitEnd.get() > 0 ) { Version lastCommittedVersion = logData->queueCommittedVersion.get(); IDiskQueue::location lastCommittedLocation = minLocation; auto locationIter = logData->versionLocation.lower_bound(lastCommittedVersion); if (locationIter != logData->versionLocation.end()) { lastCommittedLocation = locationIter->value.first; } self->persistentQueue->pop( std::min(minLocation, lastCommittedLocation) ); logData->queuePoppedVersion = std::max(logData->queuePoppedVersion, minVersion); } return Void(); } ACTOR Future updatePersistentData( TLogData* self, Reference logData, Version newPersistentDataVersion ) { state BinaryWriter wr( Unversioned() ); // PERSIST: Changes self->persistentDataVersion and writes and commits the relevant changes ASSERT( newPersistentDataVersion <= logData->version.get() ); ASSERT( newPersistentDataVersion <= logData->queueCommittedVersion.get() ); ASSERT( newPersistentDataVersion > logData->persistentDataVersion ); ASSERT( logData->persistentDataVersion == logData->persistentDataDurableVersion ); logData->newPersistentDataVersion = newPersistentDataVersion; //TraceEvent("UpdatePersistentData", self->dbgid).detail("Seq", newPersistentDataSeq); state bool anyData = false; // For all existing tags state int tagLocality = 0; state int tagId = 0; for(tagLocality = 0; tagLocality < logData->tag_data.size(); tagLocality++) { for(tagId = 0; tagId < logData->tag_data[tagLocality].size(); tagId++) { state Reference tagData = logData->tag_data[tagLocality][tagId]; if(tagData) { wait(tagData->eraseMessagesBefore( tagData->popped, self, logData, TaskPriority::UpdateStorage )); state Version currentVersion = 0; // Clear recently popped versions from persistentData if necessary updatePersistentPopped( self, logData, tagData ); state Version lastVersion = std::numeric_limits::min(); state IDiskQueue::location firstLocation = std::numeric_limits::max(); // Transfer unpopped messages with version numbers less than newPersistentDataVersion to persistentData state std::deque>::iterator msg = tagData->versionMessages.begin(); state int refSpilledTagCount = 0; wr = BinaryWriter( AssumeVersion(logData->protocolVersion) ); // We prefix our spilled locations with a count, so that we can read this back out as a VectorRef. wr << uint32_t(0); while(msg != tagData->versionMessages.end() && msg->first <= newPersistentDataVersion) { currentVersion = msg->first; anyData = true; tagData->nothingPersistent = false; if (logData->shouldSpillByValue(tagData->tag)) { wr = BinaryWriter( Unversioned() ); for(; msg != tagData->versionMessages.end() && msg->first == currentVersion; ++msg) { wr << msg->second.toStringRef(); } self->persistentData->set( KeyValueRef( persistTagMessagesKey( logData->logId, tagData->tag, currentVersion ), wr.toValue() ) ); } else { // spill everything else by reference const IDiskQueue::location begin = logData->versionLocation[currentVersion].first; const IDiskQueue::location end = logData->versionLocation[currentVersion].second; ASSERT(end > begin && end.lo - begin.lo < std::numeric_limits::max()); uint32_t length = static_cast(end.lo - begin.lo); refSpilledTagCount++; uint32_t size = 0; for(; msg != tagData->versionMessages.end() && msg->first == currentVersion; ++msg) { // Fast forward until we find a new version. size += msg->second.expectedSize(); } SpilledData spilledData( currentVersion, begin, length, size ); wr << spilledData; lastVersion = std::max(currentVersion, lastVersion); firstLocation = std::min(begin, firstLocation); if ((wr.getLength() + sizeof(SpilledData) > SERVER_KNOBS->TLOG_SPILL_REFERENCE_MAX_BYTES_PER_BATCH) ) { *(uint32_t*)wr.getData() = refSpilledTagCount; self->persistentData->set( KeyValueRef( persistTagMessageRefsKey( logData->logId, tagData->tag, lastVersion ), wr.toValue() ) ); tagData->poppedLocation = std::min(tagData->poppedLocation, firstLocation); refSpilledTagCount = 0; wr = BinaryWriter( AssumeVersion(logData->protocolVersion) ); wr << uint32_t(0); } Future f = yield(TaskPriority::UpdateStorage); if(!f.isReady()) { wait(f); msg = std::upper_bound(tagData->versionMessages.begin(), tagData->versionMessages.end(), std::make_pair(currentVersion, LengthPrefixedStringRef()), CompareFirst>()); } } } if (refSpilledTagCount > 0) { *(uint32_t*)wr.getData() = refSpilledTagCount; self->persistentData->set( KeyValueRef( persistTagMessageRefsKey( logData->logId, tagData->tag, lastVersion ), wr.toValue() ) ); tagData->poppedLocation = std::min(tagData->poppedLocation, firstLocation); } wait(yield(TaskPriority::UpdateStorage)); } } } auto locationIter = logData->versionLocation.lower_bound(newPersistentDataVersion); if (locationIter != logData->versionLocation.end()) { self->persistentData->set( KeyValueRef( persistRecoveryLocationKey, BinaryWriter::toValue(locationIter->value.first,Unversioned()) ) ); } self->persistentData->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistCurrentVersionKeys.begin), BinaryWriter::toValue(newPersistentDataVersion, Unversioned()) ) ); self->persistentData->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistKnownCommittedVersionKeys.begin), BinaryWriter::toValue(logData->knownCommittedVersion, Unversioned()) ) ); logData->persistentDataVersion = newPersistentDataVersion; wait( self->persistentData->commit() ); // SOMEDAY: This seems to be running pretty often, should we slow it down??? wait( delay(0, TaskPriority::UpdateStorage) ); // Now that the changes we made to persistentData are durable, erase the data we moved from memory and the queue, increase bytesDurable accordingly, and update persistentDataDurableVersion. TEST(anyData); // TLog moved data to persistentData logData->persistentDataDurableVersion = newPersistentDataVersion; for(tagLocality = 0; tagLocality < logData->tag_data.size(); tagLocality++) { for(tagId = 0; tagId < logData->tag_data[tagLocality].size(); tagId++) { if(logData->tag_data[tagLocality][tagId]) { wait(logData->tag_data[tagLocality][tagId]->eraseMessagesBefore( newPersistentDataVersion+1, self, logData, TaskPriority::UpdateStorage )); wait(yield(TaskPriority::UpdateStorage)); } } } logData->version_sizes.erase(logData->version_sizes.begin(), logData->version_sizes.lower_bound(logData->persistentDataDurableVersion)); wait(yield(TaskPriority::UpdateStorage)); while(!logData->messageBlocks.empty() && logData->messageBlocks.front().first <= newPersistentDataVersion) { int64_t bytesErased = int64_t(logData->messageBlocks.front().second.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; logData->bytesDurable += bytesErased; self->bytesDurable += bytesErased; logData->messageBlocks.pop_front(); wait(yield(TaskPriority::UpdateStorage)); } if(logData->bytesDurable.getValue() > logData->bytesInput.getValue() || self->bytesDurable > self->bytesInput) { TraceEvent(SevError, "BytesDurableTooLarge", logData->logId).detail("SharedBytesInput", self->bytesInput).detail("SharedBytesDurable", self->bytesDurable).detail("LocalBytesInput", logData->bytesInput.getValue()).detail("LocalBytesDurable", logData->bytesDurable.getValue()); } ASSERT(logData->bytesDurable.getValue() <= logData->bytesInput.getValue()); ASSERT(self->bytesDurable <= self->bytesInput); if( self->queueCommitEnd.get() > 0 ) { // FIXME: Maintain a heap of tags ordered by version to make this O(1) instead of O(n). Version minVersion = std::numeric_limits::max(); for(tagLocality = 0; tagLocality < logData->tag_data.size(); tagLocality++) { for(tagId = 0; tagId < logData->tag_data[tagLocality].size(); tagId++) { Reference tagData = logData->tag_data[tagLocality][tagId]; if (tagData) { if (logData->shouldSpillByValue(tagData->tag)) { minVersion = std::min(minVersion, newPersistentDataVersion); } else { minVersion = std::min(minVersion, tagData->popped); } } } } if (minVersion != std::numeric_limits::max()) { self->persistentQueue->forgetBefore( newPersistentDataVersion, logData ); // SOMEDAY: this can cause a slow task (~0.5ms), presumably from erasing too many versions. Should we limit the number of versions cleared at a time? } } logData->newPersistentDataVersion = invalidVersion; return Void(); } ACTOR Future tLogPopCore( TLogData* self, Tag inputTag, Version to, Reference logData ) { if (self->ignorePopRequest) { TraceEvent(SevDebug, "IgnoringPopRequest").detail("IgnorePopDeadline", self->ignorePopDeadline); if (self->toBePopped.find(inputTag) == self->toBePopped.end() || to > self->toBePopped[inputTag]) { self->toBePopped[inputTag] = to; } // add the pop to the toBePopped map TraceEvent(SevDebug, "IgnoringPopRequest") .detail("IgnorePopDeadline", self->ignorePopDeadline) .detail("Tag", inputTag.toString()) .detail("Version", to); return Void(); } state Version upTo = to; int8_t tagLocality = inputTag.locality; if (isPseudoLocality(tagLocality)) { if (logData->logSystem->get().isValid()) { upTo = logData->logSystem->get()->popPseudoLocalityTag(inputTag, to); tagLocality = tagLocalityLogRouter; } else { TraceEvent(SevWarn, "TLogPopNoLogSystem", self->dbgid).detail("Locality", tagLocality).detail("Version", upTo); return Void(); } } state Tag tag(tagLocality, inputTag.id); auto tagData = logData->getTagData(tag); if (!tagData) { tagData = logData->createTagData(tag, upTo, true, true, false); } else if (upTo > tagData->popped) { tagData->popped = upTo; tagData->poppedRecently = true; if(tagData->unpoppedRecovered && upTo > logData->recoveredAt) { tagData->unpoppedRecovered = false; logData->unpoppedRecoveredTags--; TraceEvent("TLogPoppedTag", logData->logId).detail("Tags", logData->unpoppedRecoveredTags).detail("Tag", tag.toString()).detail("DurableKCVer", logData->durableKnownCommittedVersion).detail("RecoveredAt", logData->recoveredAt); if(logData->unpoppedRecoveredTags == 0 && logData->durableKnownCommittedVersion >= logData->recoveredAt && logData->recoveryComplete.canBeSet()) { logData->recoveryComplete.send(Void()); } } if (upTo > logData->persistentDataDurableVersion) wait(tagData->eraseMessagesBefore(upTo, self, logData, TaskPriority::TLogPop)); //TraceEvent("TLogPop", logData->logId).detail("Tag", tag.toString()).detail("To", upTo); } return Void(); } ACTOR Future tLogPop( TLogData* self, TLogPopRequest req, Reference logData ) { // timeout check for ignorePopRequest if (self->ignorePopRequest && (g_network->now() > self->ignorePopDeadline)) { TraceEvent("EnableTLogPlayAllIgnoredPops"); // use toBePopped and issue all the pops std::map::iterator it; vector> ignoredPops; self->ignorePopRequest = false; self->ignorePopUid = ""; self->ignorePopDeadline = 0.0; for (it = self->toBePopped.begin(); it != self->toBePopped.end(); it++) { TraceEvent("PlayIgnoredPop") .detail("Tag", it->first.toString()) .detail("Version", it->second); ignoredPops.push_back(tLogPopCore(self, it->first, it->second, logData)); } self->toBePopped.clear(); wait(waitForAll(ignoredPops)); TraceEvent("ResetIgnorePopRequest") .detail("Now", g_network->now()) .detail("IgnorePopRequest", self->ignorePopRequest) .detail("IgnorePopDeadline", self->ignorePopDeadline); } wait(tLogPopCore(self, req.tag, req.to, logData)); req.reply.send(Void()); return Void(); } // This function (and updatePersistentData, which is called by this function) run at a low priority and can soak up all CPU resources. // For this reason, they employ aggressive use of yields to avoid causing slow tasks that could introduce latencies for more important // work (e.g. commits). ACTOR Future updateStorage( TLogData* self ) { while(self->spillOrder.size() && !self->id_data.count(self->spillOrder.front())) { self->spillOrder.pop_front(); } if(!self->spillOrder.size()) { wait( delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage) ); return Void(); } state Reference logData = self->id_data[self->spillOrder.front()]; state Version nextVersion = 0; state int totalSize = 0; state FlowLock::Releaser commitLockReleaser; //FIXME: This policy for calculating the cache pop version could end up popping recent data in the remote DC after two consecutive recoveries. // It also does not protect against spilling the cache tag directly, so it is theoretically possible to spill this tag; which is not intended to ever happen. Optional cachePopVersion; for(auto& it : self->id_data) { if(!it.second->stopped) { if(it.second->version.get() - it.second->unrecoveredBefore > SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT + SERVER_KNOBS->MAX_CACHE_VERSIONS) { cachePopVersion = it.second->version.get() - SERVER_KNOBS->MAX_CACHE_VERSIONS; } break; } } if(cachePopVersion.present()) { state std::vector> cachePopFutures; for(auto& it : self->id_data) { cachePopFutures.push_back(tLogPop(self, TLogPopRequest(cachePopVersion.get(),0,cacheTag), it.second)); } wait( waitForAll(cachePopFutures) ); } if(logData->stopped) { if (self->bytesInput - self->bytesDurable >= self->targetVolatileBytes) { while(logData->persistentDataDurableVersion != logData->version.get()) { totalSize = 0; Map>::iterator sizeItr = logData->version_sizes.begin(); nextVersion = logData->version.get(); while( totalSize < SERVER_KNOBS->REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT && sizeItr != logData->version_sizes.end() ) { totalSize += sizeItr->value.first + sizeItr->value.second; ++sizeItr; nextVersion = sizeItr == logData->version_sizes.end() ? logData->version.get() : sizeItr->key; } wait( logData->queueCommittedVersion.whenAtLeast( nextVersion ) ); wait( delay(0, TaskPriority::UpdateStorage) ); //TraceEvent("TlogUpdatePersist", self->dbgid).detail("LogId", logData->logId).detail("NextVersion", nextVersion).detail("Version", logData->version.get()).detail("PersistentDataDurableVer", logData->persistentDataDurableVersion).detail("QueueCommitVer", logData->queueCommittedVersion.get()).detail("PersistDataVer", logData->persistentDataVersion); if (nextVersion > logData->persistentDataVersion) { wait( self->persistentDataCommitLock.take() ); commitLockReleaser = FlowLock::Releaser(self->persistentDataCommitLock); wait( updatePersistentData(self, logData, nextVersion) ); // Concurrently with this loop, the last stopped TLog could have been removed. if (self->popOrder.size()) { wait( popDiskQueue(self, self->id_data[self->popOrder.front()]) ); } commitLockReleaser.release(); } else { wait( delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage) ); } if( logData->removed.isReady() ) { break; } } if(logData->persistentDataDurableVersion == logData->version.get()) { self->spillOrder.pop_front(); } wait( delay(0.0, TaskPriority::UpdateStorage) ); } else { wait( delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage) ); } } else if(logData->initialized) { ASSERT(self->spillOrder.size() == 1); if(logData->version_sizes.empty()) { nextVersion = logData->version.get(); } else { // Double check that a running TLog wasn't wrongly affected by spilling locked SharedTLogs. ASSERT_WE_THINK(self->targetVolatileBytes == SERVER_KNOBS->TLOG_SPILL_THRESHOLD); Map>::iterator sizeItr = logData->version_sizes.begin(); while( totalSize < SERVER_KNOBS->REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT && sizeItr != logData->version_sizes.end() && (logData->bytesInput.getValue() - logData->bytesDurable.getValue() - totalSize >= self->targetVolatileBytes || sizeItr->value.first == 0) ) { totalSize += sizeItr->value.first + sizeItr->value.second; ++sizeItr; nextVersion = sizeItr == logData->version_sizes.end() ? logData->version.get() : sizeItr->key; } } //TraceEvent("UpdateStorageVer", logData->logId).detail("NextVersion", nextVersion).detail("PersistentDataVersion", logData->persistentDataVersion).detail("TotalSize", totalSize); wait( logData->queueCommittedVersion.whenAtLeast( nextVersion ) ); wait( delay(0, TaskPriority::UpdateStorage) ); if (nextVersion > logData->persistentDataVersion) { wait( self->persistentDataCommitLock.take() ); commitLockReleaser = FlowLock::Releaser(self->persistentDataCommitLock); wait( updatePersistentData(self, logData, nextVersion) ); if (self->popOrder.size()) { wait( popDiskQueue(self, self->id_data[self->popOrder.front()]) ); } commitLockReleaser.release(); } if( totalSize < SERVER_KNOBS->REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT ) { wait( delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage) ); } else { //recovery wants to commit to persistant data when updatePersistentData is not active, this delay ensures that immediately after //updatePersist returns another one has not been started yet. wait( delay(0.0, TaskPriority::UpdateStorage) ); } } else { wait( delay(BUGGIFY ? SERVER_KNOBS->BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL : SERVER_KNOBS->TLOG_STORAGE_MIN_UPDATE_INTERVAL, TaskPriority::UpdateStorage) ); } return Void(); } ACTOR Future updateStorageLoop( TLogData* self ) { wait(delay(0, TaskPriority::UpdateStorage)); loop { wait( updateStorage(self) ); } } void commitMessages( TLogData* self, Reference logData, Version version, const std::vector& taggedMessages ) { // SOMEDAY: This method of copying messages is reasonably memory efficient, but it's still a lot of bytes copied. Find a // way to do the memory allocation right as we receive the messages in the network layer. int64_t addedBytes = 0; int64_t overheadBytes = 0; int expectedBytes = 0; int txsBytes = 0; if(!taggedMessages.size()) { return; } int msgSize = 0; for(auto& i : taggedMessages) { msgSize += i.message.size(); } // Grab the last block in the blocks list so we can share its arena // We pop all of the elements of it to create a "fresh" vector that starts at the end of the previous vector Standalone> block; if(logData->messageBlocks.empty()) { block = Standalone>(); block.reserve(block.arena(), std::max(SERVER_KNOBS->TLOG_MESSAGE_BLOCK_BYTES, msgSize)); } else { block = logData->messageBlocks.back().second; } block.pop_front(block.size()); for(auto& msg : taggedMessages) { if(msg.message.size() > block.capacity() - block.size()) { logData->messageBlocks.emplace_back(version, block); addedBytes += int64_t(block.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; block = Standalone>(); block.reserve(block.arena(), std::max(SERVER_KNOBS->TLOG_MESSAGE_BLOCK_BYTES, msgSize)); } DEBUG_TAGS_AND_MESSAGE("TLogCommitMessages", version, msg.getRawMessage()).detail("UID", self->dbgid).detail("LogId", logData->logId); block.append(block.arena(), msg.message.begin(), msg.message.size()); for(auto tag : msg.tags) { if(logData->locality == tagLocalitySatellite) { if(!(tag.locality == tagLocalityTxs || tag.locality == tagLocalityLogRouter || tag == txsTag)) { continue; } } else if(!(logData->locality == tagLocalitySpecial || logData->locality == tag.locality || tag.locality < 0)) { continue; } if(tag.locality == tagLocalityLogRouter) { if(!logData->logRouterTags) { continue; } tag.id = tag.id % logData->logRouterTags; } if(tag.locality == tagLocalityTxs) { if (logData->txsTags > 0) { tag.id = tag.id % logData->txsTags; } else { tag = txsTag; } } Reference tagData = logData->getTagData(tag); if(!tagData) { tagData = logData->createTagData(tag, 0, true, true, false); } if (version >= tagData->popped) { tagData->versionMessages.emplace_back(version, LengthPrefixedStringRef((uint32_t*)(block.end() - msg.message.size()))); if(tagData->versionMessages.back().second.expectedSize() > SERVER_KNOBS->MAX_MESSAGE_SIZE) { TraceEvent(SevWarnAlways, "LargeMessage").detail("Size", tagData->versionMessages.back().second.expectedSize()); } if (tag.locality != tagLocalityTxs && tag != txsTag) { expectedBytes += tagData->versionMessages.back().second.expectedSize(); } else { txsBytes += tagData->versionMessages.back().second.expectedSize(); } // The factor of VERSION_MESSAGES_OVERHEAD is intended to be an overestimate of the actual memory used to store this data in a std::deque. // In practice, this number is probably something like 528/512 ~= 1.03, but this could vary based on the implementation. // There will also be a fixed overhead per std::deque, but its size should be trivial relative to the size of the TLog // queue and can be thought of as increasing the capacity of the queue slightly. overheadBytes += SERVER_KNOBS->VERSION_MESSAGES_ENTRY_BYTES_WITH_OVERHEAD; } } msgSize -= msg.message.size(); } logData->messageBlocks.emplace_back(version, block); addedBytes += int64_t(block.size()) * SERVER_KNOBS->TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR; addedBytes += overheadBytes; logData->version_sizes[version] = std::make_pair(expectedBytes, txsBytes); logData->bytesInput += addedBytes; self->bytesInput += addedBytes; self->overheadBytesInput += overheadBytes; //TraceEvent("TLogPushed", self->dbgid).detail("Bytes", addedBytes).detail("MessageBytes", messages.size()).detail("Tags", tags.size()).detail("ExpectedBytes", expectedBytes).detail("MCount", mCount).detail("TCount", tCount); } void commitMessages( TLogData *self, Reference logData, Version version, Arena arena, StringRef messages ) { ArenaReader rd( arena, messages, Unversioned() ); self->tempTagMessages.clear(); while(!rd.empty()) { TagsAndMessage tagsAndMsg; tagsAndMsg.loadFromArena(&rd, nullptr); self->tempTagMessages.push_back(std::move(tagsAndMsg)); } commitMessages(self, logData, version, self->tempTagMessages); } Version poppedVersion( Reference self, Tag tag) { auto tagData = self->getTagData(tag); if (!tagData) { if (tag == txsTag || tag.locality == tagLocalityTxs) { return 0; } return self->recoveredAt; } return tagData->popped; } std::deque> & getVersionMessages( Reference self, Tag tag ) { auto tagData = self->getTagData(tag); if (!tagData) { static std::deque> empty; return empty; } return tagData->versionMessages; }; void peekMessagesFromMemory( Reference self, TLogPeekRequest const& req, BinaryWriter& messages, Version& endVersion ) { ASSERT( !messages.getLength() ); auto& deque = getVersionMessages(self, req.tag); //TraceEvent("TLogPeekMem", self->dbgid).detail("Tag", req.tag1).detail("PDS", self->persistentDataSequence).detail("PDDS", self->persistentDataDurableSequence).detail("Oldest", map1.empty() ? 0 : map1.begin()->key ).detail("OldestMsgCount", map1.empty() ? 0 : map1.begin()->value.size()); Version begin = std::max( req.begin, self->persistentDataDurableVersion+1 ); auto it = std::lower_bound(deque.begin(), deque.end(), std::make_pair(begin, LengthPrefixedStringRef()), CompareFirst>()); Version currentVersion = -1; for(; it != deque.end(); ++it) { if(it->first != currentVersion) { if (messages.getLength() >= SERVER_KNOBS->DESIRED_TOTAL_BYTES) { endVersion = currentVersion + 1; //TraceEvent("TLogPeekMessagesReached2", self->dbgid); break; } currentVersion = it->first; messages << VERSION_HEADER << currentVersion; } // We need the 4 byte length prefix to be a TagsAndMessage format, but that prefix is added as part of StringRef serialization. int offset = messages.getLength(); messages << it->second.toStringRef(); void* data = messages.getData(); DEBUG_TAGS_AND_MESSAGE("TLogPeek", currentVersion, StringRef((uint8_t*)data+offset, messages.getLength()-offset)) .detail("LogId", self->logId).detail("PeekTag", req.tag); } } ACTOR Future> parseMessagesForTag( StringRef commitBlob, Tag tag, int logRouters ) { // See the comment in LogSystem.cpp for the binary format of commitBlob. state std::vector relevantMessages; state BinaryReader rd(commitBlob, AssumeVersion(currentProtocolVersion)); while (!rd.empty()) { TagsAndMessage tagsAndMessage; tagsAndMessage.loadFromArena(&rd, nullptr); for (Tag t : tagsAndMessage.tags) { if (t == tag || (tag.locality == tagLocalityLogRouter && t.locality == tagLocalityLogRouter && t.id % logRouters == tag.id)) { // Mutations that are in the partially durable span between known comitted version and // recovery version get copied to the new log generation. These commits might have had more // log router tags than what now exist, so we mod them down to what we have. relevantMessages.push_back(tagsAndMessage.getRawMessage()); break; } } wait(yield()); } return relevantMessages; } ACTOR Future tLogPeekMessages( TLogData* self, TLogPeekRequest req, Reference logData ) { state BinaryWriter messages(Unversioned()); state BinaryWriter messages2(Unversioned()); state int sequence = -1; state UID peekId; state double queueStart = now(); if(req.tag.locality == tagLocalityTxs && req.tag.id >= logData->txsTags && logData->txsTags > 0) { req.tag.id = req.tag.id % logData->txsTags; } if(req.sequence.present()) { try { peekId = req.sequence.get().first; sequence = req.sequence.get().second; if (sequence >= SERVER_KNOBS->PARALLEL_GET_MORE_REQUESTS && logData->peekTracker.find(peekId) == logData->peekTracker.end()) { throw operation_obsolete(); } auto& trackerData = logData->peekTracker[peekId]; if (sequence == 0 && trackerData.sequence_version.find(0) == trackerData.sequence_version.end()) { trackerData.tag = req.tag; trackerData.sequence_version[0].send(std::make_pair(req.begin, req.onlySpilled)); } auto seqBegin = trackerData.sequence_version.begin(); // The peek cursor and this comparison need to agree about the maximum number of in-flight requests. while(trackerData.sequence_version.size() && seqBegin->first <= sequence - SERVER_KNOBS->PARALLEL_GET_MORE_REQUESTS) { if(seqBegin->second.canBeSet()) { seqBegin->second.sendError(operation_obsolete()); } trackerData.sequence_version.erase(seqBegin); seqBegin = trackerData.sequence_version.begin(); } if(trackerData.sequence_version.size() && sequence < seqBegin->first) { throw operation_obsolete(); } Future> fPrevPeekData = trackerData.sequence_version[sequence].getFuture(); if(fPrevPeekData.isReady()) { trackerData.unblockedPeeks++; double t = now() - trackerData.lastUpdate; if(t > trackerData.idleMax) trackerData.idleMax = t; trackerData.idleTime += t; } trackerData.lastUpdate = now(); std::pair prevPeekData = wait(fPrevPeekData); req.begin = std::max(prevPeekData.first, req.begin); req.onlySpilled = prevPeekData.second; wait(yield()); } catch( Error &e ) { if(e.code() == error_code_timed_out || e.code() == error_code_operation_obsolete) { req.reply.sendError(e); return Void(); } else { throw; } } } state double blockStart = now(); if( req.returnIfBlocked && logData->version.get() < req.begin ) { req.reply.sendError(end_of_stream()); if(req.sequence.present()) { auto& trackerData = logData->peekTracker[peekId]; auto& sequenceData = trackerData.sequence_version[sequence+1]; trackerData.lastUpdate = now(); if (!sequenceData.isSet()) { sequenceData.send(std::make_pair(req.begin, req.onlySpilled)); } } return Void(); } //TraceEvent("TLogPeekMessages0", self->dbgid).detail("ReqBeginEpoch", req.begin.epoch).detail("ReqBeginSeq", req.begin.sequence).detail("Epoch", self->epoch()).detail("PersistentDataSeq", self->persistentDataSequence).detail("Tag1", req.tag1).detail("Tag2", req.tag2); // Wait until we have something to return that the caller doesn't already have if( logData->version.get() < req.begin ) { wait( logData->version.whenAtLeast( req.begin ) ); wait( delay(SERVER_KNOBS->TLOG_PEEK_DELAY, g_network->getCurrentTask()) ); } if( logData->locality != tagLocalitySatellite && req.tag.locality == tagLocalityLogRouter ) { wait( self->concurrentLogRouterReads.take() ); state FlowLock::Releaser globalReleaser(self->concurrentLogRouterReads); wait( delay(0.0, TaskPriority::Low) ); } if( req.begin <= logData->persistentDataDurableVersion && req.tag.locality != tagLocalityTxs && req.tag != txsTag) { // Reading spilled data will almost always imply that the storage server is >5s behind the rest // of the cluster. We shouldn't prioritize spending CPU on helping this server catch up // slightly faster over keeping the rest of the cluster operating normally. // txsTag is only ever peeked on recovery, and we would still wish to prioritize requests // that impact recovery duration. wait(delay(0, TaskPriority::TLogSpilledPeekReply)); } state double workStart = now(); Version poppedVer = poppedVersion(logData, req.tag); if(poppedVer > req.begin) { TLogPeekReply rep; rep.maxKnownVersion = logData->version.get(); rep.minKnownCommittedVersion = logData->minKnownCommittedVersion; rep.popped = poppedVer; rep.end = poppedVer; rep.onlySpilled = false; if(req.sequence.present()) { auto& trackerData = logData->peekTracker[peekId]; auto& sequenceData = trackerData.sequence_version[sequence+1]; trackerData.lastUpdate = now(); if(trackerData.sequence_version.size() && sequence+1 < trackerData.sequence_version.begin()->first) { req.reply.sendError(operation_obsolete()); if (!sequenceData.isSet()) sequenceData.sendError(operation_obsolete()); return Void(); } if(sequenceData.isSet()) { if(sequenceData.getFuture().get().first != rep.end) { TEST(true); //tlog peek second attempt ended at a different version req.reply.sendError(operation_obsolete()); return Void(); } } else { sequenceData.send(std::make_pair(rep.end, rep.onlySpilled)); } rep.begin = req.begin; } req.reply.send( rep ); return Void(); } state Version endVersion = logData->version.get() + 1; state bool onlySpilled = false; //grab messages from disk //TraceEvent("TLogPeekMessages", self->dbgid).detail("ReqBeginEpoch", req.begin.epoch).detail("ReqBeginSeq", req.begin.sequence).detail("Epoch", self->epoch()).detail("PersistentDataSeq", self->persistentDataSequence).detail("Tag1", req.tag1).detail("Tag2", req.tag2); if( req.begin <= logData->persistentDataDurableVersion ) { // Just in case the durable version changes while we are waiting for the read, we grab this data from memory. We may or may not actually send it depending on // whether we get enough data from disk. // SOMEDAY: Only do this if an initial attempt to read from disk results in insufficient data and the required data is no longer in memory // SOMEDAY: Should we only send part of the messages we collected, to actually limit the size of the result? if (req.onlySpilled) { endVersion = logData->persistentDataDurableVersion + 1; } else { peekMessagesFromMemory( logData, req, messages2, endVersion ); } if ( logData->shouldSpillByValue(req.tag) ) { Standalone kvs = wait( self->persistentData->readRange(KeyRangeRef( persistTagMessagesKey(logData->logId, req.tag, req.begin), persistTagMessagesKey(logData->logId, req.tag, logData->persistentDataDurableVersion + 1)), SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES)); for (auto &kv : kvs) { auto ver = decodeTagMessagesKey(kv.key); messages << VERSION_HEADER << ver; messages.serializeBytes(kv.value); } if (kvs.expectedSize() >= SERVER_KNOBS->DESIRED_TOTAL_BYTES) { endVersion = decodeTagMessagesKey(kvs.end()[-1].key) + 1; onlySpilled = true; } else { messages.serializeBytes( messages2.toValue() ); } } else { // FIXME: Limit to approximately DESIRED_TOTATL_BYTES somehow. Standalone kvrefs = wait( self->persistentData->readRange(KeyRangeRef( persistTagMessageRefsKey(logData->logId, req.tag, req.begin), persistTagMessageRefsKey(logData->logId, req.tag, logData->persistentDataDurableVersion + 1)), SERVER_KNOBS->TLOG_SPILL_REFERENCE_MAX_BATCHES_PER_PEEK+1)); //TraceEvent("TLogPeekResults", self->dbgid).detail("ForAddress", req.reply.getEndpoint().getPrimaryAddress()).detail("Tag1Results", s1).detail("Tag2Results", s2).detail("Tag1ResultsLim", kv1.size()).detail("Tag2ResultsLim", kv2.size()).detail("Tag1ResultsLast", kv1.size() ? kv1[0].key : "").detail("Tag2ResultsLast", kv2.size() ? kv2[0].key : "").detail("Limited", limited).detail("NextEpoch", next_pos.epoch).detail("NextSeq", next_pos.sequence).detail("NowEpoch", self->epoch()).detail("NowSeq", self->sequence.getNextSequence()); state std::vector> commitLocations; state bool earlyEnd = false; uint32_t mutationBytes = 0; state uint64_t commitBytes = 0; state Version firstVersion = std::numeric_limits::max(); for (int i = 0; i < kvrefs.size() && i < SERVER_KNOBS->TLOG_SPILL_REFERENCE_MAX_BATCHES_PER_PEEK; i++) { auto& kv = kvrefs[i]; VectorRef spilledData; BinaryReader r(kv.value, AssumeVersion(logData->protocolVersion)); r >> spilledData; for (const SpilledData& sd : spilledData) { if (mutationBytes >= SERVER_KNOBS->DESIRED_TOTAL_BYTES) { earlyEnd = true; break; } if (sd.version >= req.begin) { firstVersion = std::min(firstVersion, sd.version); const IDiskQueue::location end = sd.start.lo + sd.length; commitLocations.emplace_back(sd.start, end); // This isn't perfect, because we aren't accounting for page boundaries, but should be // close enough. commitBytes += sd.length; mutationBytes += sd.mutationBytes; } } if (earlyEnd) break; } earlyEnd = earlyEnd || (kvrefs.size() >= SERVER_KNOBS->TLOG_SPILL_REFERENCE_MAX_BATCHES_PER_PEEK+1); wait( self->peekMemoryLimiter.take(TaskPriority::TLogSpilledPeekReply, commitBytes) ); state FlowLock::Releaser memoryReservation(self->peekMemoryLimiter, commitBytes); state std::vector>> messageReads; messageReads.reserve( commitLocations.size() ); for (const auto& pair : commitLocations) { messageReads.push_back( self->rawPersistentQueue->read(pair.first, pair.second, CheckHashes::YES ) ); } commitLocations.clear(); wait( waitForAll( messageReads ) ); state Version lastRefMessageVersion = 0; state int index = 0; loop { if (index >= messageReads.size()) break; Standalone queueEntryData = messageReads[index].get(); uint8_t valid; const uint32_t length = *(uint32_t*)queueEntryData.begin(); queueEntryData = queueEntryData.substr( 4, queueEntryData.size() - 4); BinaryReader rd( queueEntryData, IncludeVersion() ); state TLogQueueEntry entry; rd >> entry >> valid; ASSERT( valid == 0x01 ); ASSERT( length + sizeof(valid) == queueEntryData.size() ); messages << VERSION_HEADER << entry.version; std::vector rawMessages = wait(parseMessagesForTag(entry.messages, req.tag, logData->logRouterTags)); for (const StringRef& msg : rawMessages) { messages.serializeBytes(msg); DEBUG_TAGS_AND_MESSAGE("TLogPeekFromDisk", entry.version, msg).detail("UID", self->dbgid).detail("LogId", logData->logId).detail("PeekTag", req.tag); } lastRefMessageVersion = entry.version; index++; } messageReads.clear(); memoryReservation.release(); if (earlyEnd) { endVersion = lastRefMessageVersion + 1; onlySpilled = true; } else { messages.serializeBytes( messages2.toValue() ); } } } else { if (req.onlySpilled) { endVersion = logData->persistentDataDurableVersion + 1; } else { peekMessagesFromMemory( logData, req, messages, endVersion ); } //TraceEvent("TLogPeekResults", self->dbgid).detail("ForAddress", req.reply.getEndpoint().getPrimaryAddress()).detail("MessageBytes", messages.getLength()).detail("NextEpoch", next_pos.epoch).detail("NextSeq", next_pos.sequence).detail("NowSeq", self->sequence.getNextSequence()); } TLogPeekReply reply; reply.maxKnownVersion = logData->version.get(); reply.minKnownCommittedVersion = logData->minKnownCommittedVersion; reply.messages = messages.toValue(); reply.end = endVersion; reply.onlySpilled = onlySpilled; //TraceEvent("TlogPeek", self->dbgid).detail("LogId", logData->logId).detail("Tag", req.tag.toString()). // detail("BeginVer", req.begin).detail("EndVer", reply.end). // detail("MsgBytes", reply.messages.expectedSize()). // detail("ForAddress", req.reply.getEndpoint().getPrimaryAddress()); if(req.sequence.present()) { auto& trackerData = logData->peekTracker[peekId]; trackerData.lastUpdate = now(); double queueT = blockStart-queueStart; double blockT = workStart-blockStart; double workT = now()-workStart; trackerData.totalPeeks++; trackerData.replyBytes += reply.messages.size(); if(queueT > trackerData.queueMax) trackerData.queueMax = queueT; if(blockT > trackerData.blockMax) trackerData.blockMax = blockT; if(workT > trackerData.workMax) trackerData.workMax = workT; trackerData.queueTime += queueT; trackerData.blockTime += blockT; trackerData.workTime += workT; auto& sequenceData = trackerData.sequence_version[sequence+1]; if(trackerData.sequence_version.size() && sequence+1 < trackerData.sequence_version.begin()->first) { req.reply.sendError(operation_obsolete()); if(!sequenceData.isSet()) { // It would technically be more correct to .send({req.begin, req.onlySpilled}), as the next // request might still be in the window of active requests, but LogSystemPeekCursor will // throw away all future responses upon getting an operation_obsolete(), so computing a // response will probably be a waste of CPU. sequenceData.sendError(operation_obsolete()); } return Void(); } if(sequenceData.isSet()) { trackerData.duplicatePeeks++; if(sequenceData.getFuture().get().first != reply.end) { TEST(true); //tlog peek second attempt ended at a different version req.reply.sendError(operation_obsolete()); return Void(); } } else { sequenceData.send(std::make_pair(reply.end, reply.onlySpilled)); } reply.begin = req.begin; } req.reply.send( reply ); return Void(); } ACTOR Future watchDegraded(TLogData* self) { if(g_network->isSimulated() && g_simulator.speedUpSimulation) { return Void(); } wait(lowPriorityDelay(SERVER_KNOBS->TLOG_DEGRADED_DURATION)); TraceEvent(SevWarnAlways, "TLogDegraded", self->dbgid); TEST(true); //TLog degraded self->degraded->set(true); return Void(); } ACTOR Future doQueueCommit( TLogData* self, Reference logData, std::vector> missingFinalCommit ) { state Version ver = logData->version.get(); state Version commitNumber = self->queueCommitBegin+1; state Version knownCommittedVersion = logData->knownCommittedVersion; self->queueCommitBegin = commitNumber; logData->queueCommittingVersion = ver; g_network->setCurrentTask(TaskPriority::TLogCommitReply); Future c = self->persistentQueue->commit(); self->diskQueueCommitBytes = 0; self->largeDiskQueueCommitBytes.set(false); state Future degraded = watchDegraded(self); wait(c); if(g_network->isSimulated() && !g_simulator.speedUpSimulation && BUGGIFY_WITH_PROB(0.0001)) { wait(delay(6.0)); } degraded.cancel(); wait(self->queueCommitEnd.whenAtLeast(commitNumber-1)); //Calling check_yield instead of yield to avoid a destruction ordering problem in simulation if(g_network->check_yield(g_network->getCurrentTask())) { wait(delay(0, g_network->getCurrentTask())); } ASSERT( ver > logData->queueCommittedVersion.get() ); logData->durableKnownCommittedVersion = knownCommittedVersion; if(logData->unpoppedRecoveredTags == 0 && knownCommittedVersion >= logData->recoveredAt && logData->recoveryComplete.canBeSet()) { TraceEvent("TLogRecoveryComplete", logData->logId).detail("Tags", logData->unpoppedRecoveredTags).detail("DurableKCVer", logData->durableKnownCommittedVersion).detail("RecoveredAt", logData->recoveredAt); logData->recoveryComplete.send(Void()); } //TraceEvent("TLogCommitDurable", self->dbgid).detail("Version", ver); if(logData->logSystem->get() && (!logData->isPrimary || logData->logRouterPoppedVersion < logData->logRouterPopToVersion)) { logData->logRouterPoppedVersion = ver; logData->logSystem->get()->pop(ver, logData->remoteTag, knownCommittedVersion, logData->locality); } logData->queueCommittedVersion.set(ver); self->queueCommitEnd.set(commitNumber); for(auto& it : missingFinalCommit) { TraceEvent("TLogCommitMissingFinalCommit", self->dbgid).detail("LogId", logData->logId).detail("Version", it->version.get()).detail("QueueVer", it->queueCommittedVersion.get()); TEST(true); //A TLog was replaced before having a chance to commit its queue it->queueCommittedVersion.set(it->version.get()); } return Void(); } ACTOR Future commitQueue( TLogData* self ) { state Reference logData; loop { int foundCount = 0; state std::vector> missingFinalCommit; for(auto it : self->id_data) { if(!it.second->stopped) { logData = it.second; foundCount++; } else if(it.second->version.get() > std::max(it.second->queueCommittingVersion, it.second->queueCommittedVersion.get())) { missingFinalCommit.push_back(it.second); } } ASSERT(foundCount < 2); if(!foundCount) { wait( self->newLogData.onTrigger() ); continue; } TraceEvent("CommitQueueNewLog", self->dbgid).detail("LogId", logData->logId).detail("Version", logData->version.get()).detail("Committing", logData->queueCommittingVersion).detail("Commmitted", logData->queueCommittedVersion.get()); if(logData->committingQueue.canBeSet()) { logData->committingQueue.send(Void()); } loop { if(logData->stopped && logData->version.get() == std::max(logData->queueCommittingVersion, logData->queueCommittedVersion.get())) { wait( logData->queueCommittedVersion.whenAtLeast(logData->version.get() ) ); break; } choose { when(wait( logData->version.whenAtLeast( std::max(logData->queueCommittingVersion, logData->queueCommittedVersion.get()) + 1 ) ) ) { while( self->queueCommitBegin != self->queueCommitEnd.get() && !self->largeDiskQueueCommitBytes.get() ) { wait( self->queueCommitEnd.whenAtLeast(self->queueCommitBegin) || self->largeDiskQueueCommitBytes.onChange() ); } self->sharedActors.send(doQueueCommit(self, logData, missingFinalCommit)); missingFinalCommit.clear(); } when(wait(self->newLogData.onTrigger())) {} } } } } ACTOR Future tLogCommit( TLogData* self, TLogCommitRequest req, Reference logData, PromiseStream warningCollectorInput ) { state Optional tlogDebugID; if(req.debugID.present()) { tlogDebugID = nondeterministicRandom()->randomUniqueID(); g_traceBatch.addAttach("CommitAttachID", req.debugID.get().first(), tlogDebugID.get().first()); g_traceBatch.addEvent("CommitDebug", tlogDebugID.get().first(), "TLog.tLogCommit.BeforeWaitForVersion"); } logData->minKnownCommittedVersion = std::max(logData->minKnownCommittedVersion, req.minKnownCommittedVersion); wait( logData->version.whenAtLeast( req.prevVersion ) ); //Calling check_yield instead of yield to avoid a destruction ordering problem in simulation if(g_network->check_yield(g_network->getCurrentTask())) { wait(delay(0, g_network->getCurrentTask())); } state double waitStartT = 0; while( self->bytesInput - self->bytesDurable >= SERVER_KNOBS->TLOG_HARD_LIMIT_BYTES && !logData->stopped ) { if (now() - waitStartT >= 1) { TraceEvent(SevWarn, "TLogUpdateLag", logData->logId) .detail("Version", logData->version.get()) .detail("PersistentDataVersion", logData->persistentDataVersion) .detail("PersistentDataDurableVersion", logData->persistentDataDurableVersion); waitStartT = now(); } wait( delayJittered(.005, TaskPriority::TLogCommit) ); } if(logData->stopped) { req.reply.sendError( tlog_stopped() ); return Void(); } if (logData->version.get() == req.prevVersion) { // Not a duplicate (check relies on critical section between here self->version.set() below!) if(req.debugID.present()) g_traceBatch.addEvent("CommitDebug", tlogDebugID.get().first(), "TLog.tLogCommit.Before"); //TraceEvent("TLogCommit", logData->logId).detail("Version", req.version); commitMessages(self, logData, req.version, req.arena, req.messages); logData->knownCommittedVersion = std::max(logData->knownCommittedVersion, req.knownCommittedVersion); TLogQueueEntryRef qe; // Log the changes to the persistent queue, to be committed by commitQueue() qe.version = req.version; qe.knownCommittedVersion = logData->knownCommittedVersion; qe.messages = req.messages; qe.id = logData->logId; self->persistentQueue->push( qe, logData ); self->diskQueueCommitBytes += qe.expectedSize(); if( self->diskQueueCommitBytes > SERVER_KNOBS->MAX_QUEUE_COMMIT_BYTES ) { self->largeDiskQueueCommitBytes.set(true); } // Notifies the commitQueue actor to commit persistentQueue, and also unblocks tLogPeekMessages actors logData->version.set( req.version ); if(req.debugID.present()) g_traceBatch.addEvent("CommitDebug", tlogDebugID.get().first(), "TLog.tLogCommit.AfterTLogCommit"); } // Send replies only once all prior messages have been received and committed. state Future stopped = logData->stopCommit.onTrigger(); wait( timeoutWarning( logData->queueCommittedVersion.whenAtLeast( req.version ) || stopped, 0.1, warningCollectorInput ) ); if(stopped.isReady()) { ASSERT(logData->stopped); req.reply.sendError( tlog_stopped() ); return Void(); } if(req.debugID.present()) g_traceBatch.addEvent("CommitDebug", tlogDebugID.get().first(), "TLog.tLogCommit.After"); req.reply.send( logData->durableKnownCommittedVersion ); return Void(); } ACTOR Future initPersistentState( TLogData* self, Reference logData ) { wait( self->persistentDataCommitLock.take() ); state FlowLock::Releaser commitLockReleaser(self->persistentDataCommitLock); // PERSIST: Initial setup of persistentData for a brand new tLog for a new database state IKeyValueStore *storage = self->persistentData; wait( ioTimeoutError( storage->init(), SERVER_KNOBS->TLOG_MAX_CREATE_DURATION ) ); storage->set( persistFormat ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistCurrentVersionKeys.begin), BinaryWriter::toValue(logData->version.get(), Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistKnownCommittedVersionKeys.begin), BinaryWriter::toValue(logData->knownCommittedVersion, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistLocalityKeys.begin), BinaryWriter::toValue(logData->locality, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistLogRouterTagsKeys.begin), BinaryWriter::toValue(logData->logRouterTags, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistTxsTagsKeys.begin), BinaryWriter::toValue(logData->txsTags, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistRecoveryCountKeys.begin), BinaryWriter::toValue(logData->recoveryCount, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistProtocolVersionKeys.begin), BinaryWriter::toValue(logData->protocolVersion, Unversioned()) ) ); storage->set( KeyValueRef( BinaryWriter::toValue(logData->logId,Unversioned()).withPrefix(persistTLogSpillTypeKeys.begin), BinaryWriter::toValue(logData->logSpillType, AssumeVersion(logData->protocolVersion)) ) ); for(auto tag : logData->allTags) { ASSERT(!logData->getTagData(tag)); logData->createTagData(tag, 0, true, true, true); updatePersistentPopped( self, logData, logData->getTagData(tag) ); } TraceEvent("TLogInitCommit", logData->logId); wait( ioTimeoutError( self->persistentData->commit(), SERVER_KNOBS->TLOG_MAX_CREATE_DURATION ) ); return Void(); } ACTOR Future rejoinMasters( TLogData* self, TLogInterface tli, DBRecoveryCount recoveryCount, Future registerWithMaster, bool isPrimary ) { state UID lastMasterID(0,0); loop { auto const& inf = self->dbInfo->get(); bool isDisplaced = !std::count( inf.priorCommittedLogServers.begin(), inf.priorCommittedLogServers.end(), tli.id() ); if(isPrimary) { isDisplaced = isDisplaced && inf.recoveryCount >= recoveryCount && inf.recoveryState != RecoveryState::UNINITIALIZED; } else { isDisplaced = isDisplaced && ( ( inf.recoveryCount > recoveryCount && inf.recoveryState != RecoveryState::UNINITIALIZED ) || ( inf.recoveryCount == recoveryCount && inf.recoveryState == RecoveryState::FULLY_RECOVERED ) ); } isDisplaced = isDisplaced && !inf.logSystemConfig.hasTLog(tli.id()); if (isDisplaced) { TraceEvent("TLogDisplaced", tli.id()) .detail("Reason", "DBInfoDoesNotContain") .detail("RecoveryCount", recoveryCount) .detail("InfRecoveryCount", inf.recoveryCount) .detail("RecoveryState", (int)inf.recoveryState) .detail("LogSysConf", describe(inf.logSystemConfig.tLogs)) .detail("PriorLogs", describe(inf.priorCommittedLogServers)) .detail("OldLogGens", inf.logSystemConfig.oldTLogs.size()); if (BUGGIFY) wait( delay( SERVER_KNOBS->BUGGIFY_WORKER_REMOVED_MAX_LAG * deterministicRandom()->random01() ) ); throw worker_removed(); } if( registerWithMaster.isReady() ) { if ( self->dbInfo->get().master.id() != lastMasterID) { // The TLogRejoinRequest is needed to establish communications with a new master, which doesn't have our TLogInterface TLogRejoinRequest req(tli); TraceEvent("TLogRejoining", tli.id()).detail("Master", self->dbInfo->get().master.id()); choose { when(TLogRejoinReply rep = wait(brokenPromiseToNever(self->dbInfo->get().master.tlogRejoin.getReply(req)))) { if (rep.masterIsRecovered) lastMasterID = self->dbInfo->get().master.id(); } when ( wait( self->dbInfo->onChange() ) ) { } } } else { wait( self->dbInfo->onChange() ); } } else { wait( registerWithMaster || self->dbInfo->onChange() ); } } } ACTOR Future respondToRecovered( TLogInterface tli, Promise recoveryComplete ) { state bool finishedRecovery = true; try { wait( recoveryComplete.getFuture() ); } catch( Error &e ) { if(e.code() != error_code_end_of_stream) { throw; } finishedRecovery = false; } TraceEvent("TLogRespondToRecovered", tli.id()).detail("Finished", finishedRecovery); loop { TLogRecoveryFinishedRequest req = waitNext( tli.recoveryFinished.getFuture() ); if(finishedRecovery) { req.reply.send(Void()); } else { req.reply.send(Never()); } } } ACTOR Future cleanupPeekTrackers( LogData* logData ) { loop { double minTimeUntilExpiration = SERVER_KNOBS->PEEK_TRACKER_EXPIRATION_TIME; auto it = logData->peekTracker.begin(); while(it != logData->peekTracker.end()) { double timeUntilExpiration = it->second.lastUpdate + SERVER_KNOBS->PEEK_TRACKER_EXPIRATION_TIME - now(); if(timeUntilExpiration < 1.0e-6) { for(auto seq : it->second.sequence_version) { if(!seq.second.isSet()) { seq.second.sendError(timed_out()); } } it = logData->peekTracker.erase(it); } else { minTimeUntilExpiration = std::min(minTimeUntilExpiration, timeUntilExpiration); ++it; } } wait( delay(minTimeUntilExpiration) ); } } ACTOR Future logPeekTrackers( LogData* logData ) { loop { int64_t logThreshold = 1; if(logData->peekTracker.size() > SERVER_KNOBS->PEEK_LOGGING_AMOUNT) { std::vector peekCounts; peekCounts.reserve(logData->peekTracker.size()); for( auto& it : logData->peekTracker ) { peekCounts.push_back(it.second.totalPeeks); } size_t pivot = peekCounts.size()-SERVER_KNOBS->PEEK_LOGGING_AMOUNT; std::nth_element(peekCounts.begin(), peekCounts.begin()+pivot, peekCounts.end()); logThreshold = std::max(1,peekCounts[pivot]); } int logCount = 0; for( auto& it : logData->peekTracker ) { if(it.second.totalPeeks >= logThreshold) { logCount++; TraceEvent("PeekMetrics", logData->logId) .detail("Tag", it.second.tag.toString()) .detail("Elapsed", now() - it.second.lastLogged) .detail("MeanReplyBytes", it.second.replyBytes/it.second.totalPeeks) .detail("TotalPeeks", it.second.totalPeeks) .detail("UnblockedPeeks", it.second.unblockedPeeks) .detail("DuplicatePeeks", it.second.duplicatePeeks) .detail("Sequence", it.second.sequence_version.size() ? it.second.sequence_version.begin()->first : -1) .detail("IdleSeconds", it.second.idleTime) .detail("IdleMax", it.second.idleMax) .detail("QueueSeconds", it.second.queueTime) .detail("QueueMax", it.second.queueMax) .detail("BlockSeconds", it.second.blockTime) .detail("BlockMax", it.second.blockMax) .detail("WorkSeconds", it.second.workTime) .detail("WorkMax", it.second.workMax); it.second.resetMetrics(); } } wait( delay(SERVER_KNOBS->PEEK_LOGGING_DELAY * std::max(1,logCount)) ); } } void getQueuingMetrics( TLogData* self, Reference logData, TLogQueuingMetricsRequest const& req ) { TLogQueuingMetricsReply reply; reply.localTime = now(); reply.instanceID = self->instanceID; reply.bytesInput = self->bytesInput; reply.bytesDurable = self->bytesDurable; reply.storageBytes = self->persistentData->getStorageBytes(); //FIXME: Add the knownCommittedVersion to this message and change ratekeeper to use that version. reply.v = logData->durableKnownCommittedVersion; req.reply.send( reply ); } ACTOR Future tLogSnapCreate(TLogSnapRequest snapReq, TLogData* self, Reference logData) { if (self->ignorePopUid != snapReq.snapUID.toString()) { snapReq.reply.sendError(operation_failed()); return Void(); } ExecCmdValueString snapArg(snapReq.snapPayload); try { int err = wait(execHelper(&snapArg, snapReq.snapUID, self->dataFolder, snapReq.role.toString())); std::string uidStr = snapReq.snapUID.toString(); TraceEvent("ExecTraceTLog") .detail("Uid", uidStr) .detail("Status", err) .detail("Role", snapReq.role) .detail("Value", self->dataFolder) .detail("ExecPayload", snapReq.snapPayload) .detail("PersistentDataVersion", logData->persistentDataVersion) .detail("PersistentDatadurableVersion", logData->persistentDataDurableVersion) .detail("QueueCommittedVersion", logData->queueCommittedVersion.get()) .detail("Version", logData->version.get()); if (err != 0) { throw operation_failed(); } snapReq.reply.send(Void()); } catch (Error& e) { TraceEvent("TLogExecHelperError").error(e, true /*includeCancelled */); if (e.code() != error_code_operation_cancelled) { snapReq.reply.sendError(e); } else { throw e; } } return Void(); } ACTOR Future tLogEnablePopReq(TLogEnablePopRequest enablePopReq, TLogData* self, Reference logData) { if (self->ignorePopUid != enablePopReq.snapUID.toString()) { TraceEvent(SevWarn, "TLogPopDisableEnableUidMismatch") .detail("IgnorePopUid", self->ignorePopUid) .detail("UidStr", enablePopReq.snapUID.toString()); enablePopReq.reply.sendError(operation_failed()); return Void(); } TraceEvent("EnableTLogPlayAllIgnoredPops2"); // use toBePopped and issue all the pops std::map::iterator it; state vector> ignoredPops; self->ignorePopRequest = false; self->ignorePopDeadline = 0.0; self->ignorePopUid = ""; for (it = self->toBePopped.begin(); it != self->toBePopped.end(); it++) { TraceEvent("PlayIgnoredPop") .detail("Tag", it->first.toString()) .detail("Version", it->second); ignoredPops.push_back(tLogPopCore(self, it->first, it->second, logData)); } TraceEvent("TLogExecCmdPopEnable") .detail("UidStr", enablePopReq.snapUID.toString()) .detail("IgnorePopUid", self->ignorePopUid) .detail("IgnporePopRequest", self->ignorePopRequest) .detail("IgnporePopDeadline", self->ignorePopDeadline) .detail("PersistentDataVersion", logData->persistentDataVersion) .detail("PersistentDatadurableVersion", logData->persistentDataDurableVersion) .detail("QueueCommittedVersion", logData->queueCommittedVersion.get()) .detail("Version", logData->version.get()); wait(waitForAll(ignoredPops)); self->toBePopped.clear(); enablePopReq.reply.send(Void()); return Void(); } ACTOR Future serveTLogInterface( TLogData* self, TLogInterface tli, Reference logData, PromiseStream warningCollectorInput ) { state Future dbInfoChange = Void(); loop choose { when( wait( dbInfoChange ) ) { dbInfoChange = self->dbInfo->onChange(); bool found = false; if(self->dbInfo->get().recoveryState >= RecoveryState::ACCEPTING_COMMITS) { for(auto& logs : self->dbInfo->get().logSystemConfig.tLogs) { if( std::count( logs.tLogs.begin(), logs.tLogs.end(), logData->logId ) ) { found = true; break; } } } if(found && self->dbInfo->get().logSystemConfig.recruitmentID == logData->recruitmentID) { logData->logSystem->set(ILogSystem::fromServerDBInfo( self->dbgid, self->dbInfo->get() )); if(!logData->isPrimary) { logData->logSystem->get()->pop(logData->logRouterPoppedVersion, logData->remoteTag, logData->durableKnownCommittedVersion, logData->locality); } if(!logData->isPrimary && logData->stopped) { TraceEvent("TLogAlreadyStopped", self->dbgid).detail("LogId", logData->logId); logData->removed = logData->removed && logData->logSystem->get()->endEpoch(); } } else { logData->logSystem->set(Reference()); } } when( TLogPeekRequest req = waitNext( tli.peekMessages.getFuture() ) ) { logData->addActor.send( tLogPeekMessages( self, req, logData ) ); } when( TLogPopRequest req = waitNext( tli.popMessages.getFuture() ) ) { logData->addActor.send(tLogPop(self, req, logData)); } when( TLogCommitRequest req = waitNext( tli.commit.getFuture() ) ) { //TraceEvent("TLogCommitReq", logData->logId).detail("Ver", req.version).detail("PrevVer", req.prevVersion).detail("LogVer", logData->version.get()); ASSERT(logData->isPrimary); TEST(logData->stopped); // TLogCommitRequest while stopped if (!logData->stopped) logData->addActor.send( tLogCommit( self, req, logData, warningCollectorInput ) ); else req.reply.sendError( tlog_stopped() ); } when( ReplyPromise< TLogLockResult > reply = waitNext( tli.lock.getFuture() ) ) { logData->addActor.send( tLogLock(self, reply, logData) ); } when (TLogQueuingMetricsRequest req = waitNext(tli.getQueuingMetrics.getFuture())) { getQueuingMetrics(self, logData, req); } when (TLogConfirmRunningRequest req = waitNext(tli.confirmRunning.getFuture())){ if (req.debugID.present() ) { UID tlogDebugID = nondeterministicRandom()->randomUniqueID(); g_traceBatch.addAttach("TransactionAttachID", req.debugID.get().first(), tlogDebugID.first()); g_traceBatch.addEvent("TransactionDebug", tlogDebugID.first(), "TLogServer.TLogConfirmRunningRequest"); } if (!logData->stopped) req.reply.send(Void()); else req.reply.sendError( tlog_stopped() ); } when( TLogDisablePopRequest req = waitNext( tli.disablePopRequest.getFuture() ) ) { if (self->ignorePopUid != "") { TraceEvent(SevWarn, "TLogPopDisableonDisable") .detail("IgnorePopUid", self->ignorePopUid) .detail("UidStr", req.snapUID.toString()) .detail("PersistentDataVersion", logData->persistentDataVersion) .detail("PersistentDatadurableVersion", logData->persistentDataDurableVersion) .detail("QueueCommittedVersion", logData->queueCommittedVersion.get()) .detail("Version", logData->version.get()); req.reply.sendError(operation_failed()); } else { //FIXME: As part of reverting snapshot V1, make ignorePopUid a UID instead of string self->ignorePopRequest = true; self->ignorePopUid = req.snapUID.toString(); self->ignorePopDeadline = g_network->now() + SERVER_KNOBS->TLOG_IGNORE_POP_AUTO_ENABLE_DELAY; req.reply.send(Void()); } } when( TLogEnablePopRequest enablePopReq = waitNext( tli.enablePopRequest.getFuture() ) ) { logData->addActor.send( tLogEnablePopReq( enablePopReq, self, logData) ); } when( TLogSnapRequest snapReq = waitNext( tli.snapRequest.getFuture() ) ) { logData->addActor.send( tLogSnapCreate( snapReq, self, logData) ); } } } void removeLog( TLogData* self, Reference logData ) { TraceEvent("TLogRemoved", self->dbgid).detail("LogId", logData->logId).detail("Input", logData->bytesInput.getValue()).detail("Durable", logData->bytesDurable.getValue()); logData->stopped = true; if(!logData->recoveryComplete.isSet()) { logData->recoveryComplete.sendError(end_of_stream()); } logData->addActor = PromiseStream>(); //there could be items still in the promise stream if one of the actors threw an error immediately self->id_data.erase(logData->logId); while (self->popOrder.size() && !self->id_data.count(self->popOrder.front())) { self->popOrder.pop_front(); } if (self->id_data.size() == 0) { throw worker_removed(); } } ACTOR Future pullAsyncData( TLogData* self, Reference logData, std::vector tags, Version beginVersion, Optional endVersion, bool poppedIsKnownCommitted ) { state Future dbInfoChange = Void(); state Reference r; state Version tagAt = beginVersion; state Version lastVer = 0; if (endVersion.present()) { TraceEvent("TLogRestoreReplicationFactor", self->dbgid).detail("LogId", logData->logId).detail("Locality", logData->locality).detail("RecoverFrom", beginVersion).detail("RecoverTo", endVersion.get()); } while (!endVersion.present() || logData->version.get() < endVersion.get()) { loop { choose { when(wait( r ? r->getMore(TaskPriority::TLogCommit) : Never() ) ) { break; } when( wait( dbInfoChange ) ) { if( logData->logSystem->get() ) { r = logData->logSystem->get()->peek( logData->logId, tagAt, endVersion, tags, true ); } else { r = Reference(); } dbInfoChange = logData->logSystem->onChange(); } } } state double waitStartT = 0; while( self->bytesInput - self->bytesDurable >= SERVER_KNOBS->TLOG_HARD_LIMIT_BYTES && !logData->stopped ) { if (now() - waitStartT >= 1) { TraceEvent(SevWarn, "TLogUpdateLag", logData->logId) .detail("Version", logData->version.get()) .detail("PersistentDataVersion", logData->persistentDataVersion) .detail("PersistentDataDurableVersion", logData->persistentDataDurableVersion); waitStartT = now(); } wait( delayJittered(.005, TaskPriority::TLogCommit) ); } state Version ver = 0; state std::vector messages; loop { state bool foundMessage = r->hasMessage(); if (!foundMessage || r->version().version != ver) { ASSERT(r->version().version > lastVer); if (ver) { if(logData->stopped || (endVersion.present() && ver > endVersion.get())) { return Void(); } if(poppedIsKnownCommitted) { logData->knownCommittedVersion = std::max(logData->knownCommittedVersion, r->popped()); logData->minKnownCommittedVersion = std::max(logData->minKnownCommittedVersion, r->getMinKnownCommittedVersion()); } commitMessages(self, logData, ver, messages); if(self->terminated.isSet()) { return Void(); } // Log the changes to the persistent queue, to be committed by commitQueue() AlternativeTLogQueueEntryRef qe; qe.version = ver; qe.knownCommittedVersion = logData->knownCommittedVersion; qe.alternativeMessages = &messages; qe.id = logData->logId; self->persistentQueue->push( qe, logData ); self->diskQueueCommitBytes += qe.expectedSize(); if( self->diskQueueCommitBytes > SERVER_KNOBS->MAX_QUEUE_COMMIT_BYTES ) { self->largeDiskQueueCommitBytes.set(true); } // Notifies the commitQueue actor to commit persistentQueue, and also unblocks tLogPeekMessages actors logData->version.set( ver ); wait( yield(TaskPriority::TLogCommit) ); } lastVer = ver; ver = r->version().version; messages.clear(); if (!foundMessage) { ver--; if(ver > logData->version.get()) { if(logData->stopped || (endVersion.present() && ver > endVersion.get())) { return Void(); } if(poppedIsKnownCommitted) { logData->knownCommittedVersion = std::max(logData->knownCommittedVersion, r->popped()); logData->minKnownCommittedVersion = std::max(logData->minKnownCommittedVersion, r->getMinKnownCommittedVersion()); } if(self->terminated.isSet()) { return Void(); } // Log the changes to the persistent queue, to be committed by commitQueue() TLogQueueEntryRef qe; qe.version = ver; qe.knownCommittedVersion = logData->knownCommittedVersion; qe.messages = StringRef(); qe.id = logData->logId; self->persistentQueue->push( qe, logData ); self->diskQueueCommitBytes += qe.expectedSize(); if( self->diskQueueCommitBytes > SERVER_KNOBS->MAX_QUEUE_COMMIT_BYTES ) { self->largeDiskQueueCommitBytes.set(true); } // Notifies the commitQueue actor to commit persistentQueue, and also unblocks tLogPeekMessages actors logData->version.set( ver ); wait( yield(TaskPriority::TLogCommit) ); } break; } } messages.emplace_back(r->getMessageWithTags(), r->getTags()); r->nextMessage(); } tagAt = std::max( r->version().version, logData->version.get() + 1 ); } return Void(); } ACTOR Future tLogCore( TLogData* self, Reference logData, TLogInterface tli, bool pulledRecoveryVersions ) { if(logData->removed.isReady()) { wait(delay(0)); //to avoid iterator invalidation in restorePersistentState when removed is already ready ASSERT(logData->removed.isError()); if(logData->removed.getError().code() != error_code_worker_removed) { throw logData->removed.getError(); } removeLog(self, logData); return Void(); } state PromiseStream warningCollectorInput; state Future warningCollector = timeoutWarningCollector( warningCollectorInput.getFuture(), 1.0, "TLogQueueCommitSlow", self->dbgid ); state Future error = actorCollection( logData->addActor.getFuture() ); logData->addActor.send( waitFailureServer( tli.waitFailure.getFuture()) ); logData->addActor.send( logData->removed ); //FIXME: update tlogMetrics to include new information, or possibly only have one copy for the shared instance logData->addActor.send( traceCounters("TLogMetrics", logData->logId, SERVER_KNOBS->STORAGE_LOGGING_DELAY, &logData->cc, logData->logId.toString() + "/TLogMetrics")); logData->addActor.send( serveTLogInterface(self, tli, logData, warningCollectorInput) ); logData->addActor.send( cleanupPeekTrackers(logData.getPtr()) ); logData->addActor.send( logPeekTrackers(logData.getPtr()) ); if(!logData->isPrimary) { std::vector tags; tags.push_back(logData->remoteTag); logData->addActor.send( pullAsyncData(self, logData, tags, pulledRecoveryVersions ? logData->recoveredAt + 1 : logData->unrecoveredBefore, Optional(), true) ); } try { wait( error ); throw internal_error(); } catch( Error &e ) { if( e.code() != error_code_worker_removed ) throw; removeLog(self, logData); return Void(); } } ACTOR Future checkEmptyQueue(TLogData* self) { TraceEvent("TLogCheckEmptyQueueBegin", self->dbgid); try { bool recoveryFinished = wait( self->persistentQueue->initializeRecovery(0) ); if (recoveryFinished) return Void(); TLogQueueEntry r = wait( self->persistentQueue->readNext(self) ); throw internal_error(); } catch (Error& e) { if (e.code() != error_code_end_of_stream) throw; TraceEvent("TLogCheckEmptyQueueEnd", self->dbgid); return Void(); } } ACTOR Future checkRecovered(TLogData* self) { TraceEvent("TLogCheckRecoveredBegin", self->dbgid); Optional v = wait( self->persistentData->readValue(StringRef()) ); TraceEvent("TLogCheckRecoveredEnd", self->dbgid); return Void(); } // Recovery persistent state of tLog from disk ACTOR Future restorePersistentState( TLogData* self, LocalityData locality, Promise oldLog, Promise recovered, PromiseStream tlogRequests ) { state double startt = now(); state Reference logData; state KeyRange tagKeys; // PERSIST: Read basic state from persistentData; replay persistentQueue but don't erase it TraceEvent("TLogRestorePersistentState", self->dbgid); state IKeyValueStore *storage = self->persistentData; wait(storage->init()); state Future> fFormat = storage->readValue(persistFormat.key); state Future> fRecoveryLocation = storage->readValue(persistRecoveryLocationKey); state Future> fVers = storage->readRange(persistCurrentVersionKeys); state Future> fKnownCommitted = storage->readRange(persistKnownCommittedVersionKeys); state Future> fLocality = storage->readRange(persistLocalityKeys); state Future> fLogRouterTags = storage->readRange(persistLogRouterTagsKeys); state Future> fTxsTags = storage->readRange(persistTxsTagsKeys); state Future> fRecoverCounts = storage->readRange(persistRecoveryCountKeys); state Future> fProtocolVersions = storage->readRange(persistProtocolVersionKeys); state Future> fTLogSpillTypes = storage->readRange(persistTLogSpillTypeKeys); // FIXME: metadata in queue? wait( waitForAll( std::vector{fFormat, fRecoveryLocation} ) ); wait( waitForAll( std::vector{fVers, fKnownCommitted, fLocality, fLogRouterTags, fTxsTags, fRecoverCounts, fProtocolVersions, fTLogSpillTypes} ) ); if (fFormat.get().present() && !persistFormatReadableRange.contains( fFormat.get().get() )) { //FIXME: remove when we no longer need to test upgrades from 4.X releases if(g_network->isSimulated()) { TraceEvent("ElapsedTime").detail("SimTime", now()).detail("RealTime", 0).detail("RandomUnseed", 0); flushAndExit(0); } TraceEvent(SevError, "UnsupportedDBFormat", self->dbgid).detail("Format", fFormat.get().get()).detail("Expected", persistFormat.value.toString()); throw worker_recovery_failed(); } if (!fFormat.get().present()) { Standalone v = wait( self->persistentData->readRange( KeyRangeRef(StringRef(), LiteralStringRef("\xff")), 1 ) ); if (!v.size()) { TEST(true); // The DB is completely empty, so it was never initialized. Delete it. throw worker_removed(); } else { // This should never happen TraceEvent(SevError, "NoDBFormatKey", self->dbgid).detail("FirstKey", v[0].key); ASSERT( false ); throw worker_recovery_failed(); } } state std::vector>> removed; ASSERT(fFormat.get().get() == LiteralStringRef("FoundationDB/LogServer/3/0")); ASSERT(fVers.get().size() == fRecoverCounts.get().size()); state std::map id_locality; for(auto it : fLocality.get()) { id_locality[ BinaryReader::fromStringRef(it.key.removePrefix(persistLocalityKeys.begin), Unversioned())] = BinaryReader::fromStringRef( it.value, Unversioned() ); } state std::map id_logRouterTags; for(auto it : fLogRouterTags.get()) { id_logRouterTags[ BinaryReader::fromStringRef(it.key.removePrefix(persistLogRouterTagsKeys.begin), Unversioned())] = BinaryReader::fromStringRef( it.value, Unversioned() ); } state std::map id_txsTags; for(auto it : fTxsTags.get()) { id_txsTags[ BinaryReader::fromStringRef(it.key.removePrefix(persistTxsTagsKeys.begin), Unversioned())] = BinaryReader::fromStringRef( it.value, Unversioned() ); } state std::map id_knownCommitted; for(auto it : fKnownCommitted.get()) { id_knownCommitted[ BinaryReader::fromStringRef(it.key.removePrefix(persistKnownCommittedVersionKeys.begin), Unversioned())] = BinaryReader::fromStringRef( it.value, Unversioned() ); } state IDiskQueue::location minimumRecoveryLocation = 0; if (fRecoveryLocation.get().present()) { minimumRecoveryLocation = BinaryReader::fromStringRef(fRecoveryLocation.get().get(), Unversioned()); } state int idx = 0; state Promise registerWithMaster; state std::map id_interf; state std::vector> logsByVersion; for(idx = 0; idx < fVers.get().size(); idx++) { state KeyRef rawId = fVers.get()[idx].key.removePrefix(persistCurrentVersionKeys.begin); UID id1 = BinaryReader::fromStringRef( rawId, Unversioned() ); UID id2 = BinaryReader::fromStringRef( fRecoverCounts.get()[idx].key.removePrefix(persistRecoveryCountKeys.begin), Unversioned() ); ASSERT(id1 == id2); TLogInterface recruited(id1, self->dbgid, locality); recruited.initEndpoints(); DUMPTOKEN( recruited.peekMessages ); DUMPTOKEN( recruited.popMessages ); DUMPTOKEN( recruited.commit ); DUMPTOKEN( recruited.lock ); DUMPTOKEN( recruited.getQueuingMetrics ); DUMPTOKEN( recruited.confirmRunning ); ProtocolVersion protocolVersion = BinaryReader::fromStringRef( fProtocolVersions.get()[idx].value, Unversioned() ); TLogSpillType logSpillType = BinaryReader::fromStringRef( fTLogSpillTypes.get()[idx].value, AssumeVersion(protocolVersion) ); //We do not need the remoteTag, because we will not be loading any additional data logData = Reference( new LogData(self, recruited, Tag(), true, id_logRouterTags[id1], id_txsTags[id1], UID(), protocolVersion, logSpillType, std::vector(), "Restored") ); logData->locality = id_locality[id1]; logData->stopped = true; self->id_data[id1] = logData; id_interf[id1] = recruited; logData->knownCommittedVersion = id_knownCommitted[id1]; Version ver = BinaryReader::fromStringRef( fVers.get()[idx].value, Unversioned() ); logData->persistentDataVersion = ver; logData->persistentDataDurableVersion = ver; logData->version.set(ver); logData->recoveryCount = BinaryReader::fromStringRef( fRecoverCounts.get()[idx].value, Unversioned() ); logData->removed = rejoinMasters(self, recruited, logData->recoveryCount, registerWithMaster.getFuture(), false); removed.push_back(errorOr(logData->removed)); logsByVersion.emplace_back(ver, id1); TraceEvent("TLogPersistentStateRestore", self->dbgid).detail("LogId", logData->logId).detail("Ver", ver); // Restore popped keys. Pop operations that took place after the last (committed) updatePersistentDataVersion might be lost, but // that is fine because we will get the corresponding data back, too. tagKeys = prefixRange( rawId.withPrefix(persistTagPoppedKeys.begin) ); loop { if(logData->removed.isReady()) break; Standalone data = wait( self->persistentData->readRange( tagKeys, BUGGIFY ? 3 : 1<<30, 1<<20 ) ); if (!data.size()) break; ((KeyRangeRef&)tagKeys) = KeyRangeRef( keyAfter(data.back().key, tagKeys.arena()), tagKeys.end ); for(auto &kv : data) { Tag tag = decodeTagPoppedKey(rawId, kv.key); Version popped = decodeTagPoppedValue(kv.value); TraceEvent("TLogRestorePopped", logData->logId).detail("Tag", tag.toString()).detail("To", popped); auto tagData = logData->getTagData(tag); ASSERT( !tagData ); logData->createTagData(tag, popped, false, false, false); logData->getTagData(tag)->persistentPopped = popped; } } } std::sort(logsByVersion.begin(), logsByVersion.end()); for (const auto& pair : logsByVersion) { // TLogs that have been fully spilled won't have queue entries read in the loop below. self->popOrder.push_back(pair.second); } logsByVersion.clear(); state Future allRemoved = waitForAll(removed); state UID lastId = UID(1,1); //initialized so it will not compare equal to a default UID state double recoverMemoryLimit = SERVER_KNOBS->TLOG_RECOVER_MEMORY_LIMIT; if (BUGGIFY) recoverMemoryLimit = std::max( SERVER_KNOBS->BUGGIFY_RECOVER_MEMORY_LIMIT, (double)SERVER_KNOBS->TLOG_SPILL_THRESHOLD); try { bool recoveryFinished = wait( self->persistentQueue->initializeRecovery(minimumRecoveryLocation) ); if (recoveryFinished) throw end_of_stream(); loop { if(allRemoved.isReady()) { TEST(true); //all tlogs removed during queue recovery throw worker_removed(); } choose { when( TLogQueueEntry qe = wait( self->persistentQueue->readNext(self) ) ) { if(qe.id != lastId) { lastId = qe.id; auto it = self->id_data.find(qe.id); if(it != self->id_data.end()) { logData = it->second; } else { logData = Reference(); } } //TraceEvent("TLogRecoveredQE", self->dbgid).detail("LogId", qe.id).detail("Ver", qe.version).detail("MessageBytes", qe.messages.size()).detail("Tags", qe.tags.size()) // .detail("Tag0", qe.tags.size() ? qe.tags[0].tag : invalidTag).detail("Version", logData->version.get()); if(logData) { if(!self->spillOrder.size() || self->spillOrder.back() != qe.id) { self->spillOrder.push_back(qe.id); } logData->knownCommittedVersion = std::max(logData->knownCommittedVersion, qe.knownCommittedVersion); if( qe.version > logData->version.get() ) { commitMessages(self, logData, qe.version, qe.arena(), qe.messages); logData->version.set( qe.version ); logData->queueCommittedVersion.set( qe.version ); while (self->bytesInput - self->bytesDurable >= recoverMemoryLimit) { TEST(true); // Flush excess data during TLog queue recovery TraceEvent("FlushLargeQueueDuringRecovery", self->dbgid).detail("LogId", logData->logId).detail("BytesInput", self->bytesInput).detail("BytesDurable", self->bytesDurable).detail("Version", logData->version.get()).detail("PVer", logData->persistentDataVersion); choose { when( wait( updateStorage(self) ) ) {} when( wait( allRemoved ) ) { throw worker_removed(); } } } } else { // Updating persistRecoveryLocation and persistCurrentVersion at the same time, // transactionally, should mean that we never read any TLogQueueEntry that has already // been spilled. ASSERT_WE_THINK(qe.version == logData->version.get()); } } } when( wait( allRemoved ) ) { throw worker_removed(); } } } } catch (Error& e) { if (e.code() != error_code_end_of_stream) throw; } TraceEvent("TLogRestorePersistentStateDone", self->dbgid).detail("Took", now()-startt); TEST( now()-startt >= 1.0 ); // TLog recovery took more than 1 second for(auto it : self->id_data) { if(it.second->queueCommittedVersion.get() == 0) { TraceEvent("TLogZeroVersion", self->dbgid).detail("LogId", it.first); it.second->queueCommittedVersion.set(it.second->version.get()); } it.second->recoveryComplete.sendError(end_of_stream()); self->sharedActors.send( tLogCore( self, it.second, id_interf[it.first], false ) ); } if(registerWithMaster.canBeSet()) registerWithMaster.send(Void()); return Void(); } bool tlogTerminated( TLogData* self, IKeyValueStore* persistentData, TLogQueue* persistentQueue, Error const& e ) { // Dispose the IKVS (destroying its data permanently) only if this shutdown is definitely permanent. Otherwise just close it. if (e.code() == error_code_worker_removed || e.code() == error_code_recruitment_failed) { persistentData->dispose(); persistentQueue->dispose(); } else { persistentData->close(); persistentQueue->close(); } if ( e.code() == error_code_worker_removed || e.code() == error_code_recruitment_failed || e.code() == error_code_file_not_found ) { TraceEvent("TLogTerminated", self->dbgid).error(e, true); return true; } else return false; } ACTOR Future updateLogSystem(TLogData* self, Reference logData, LogSystemConfig recoverFrom, Reference>> logSystem) { loop { bool found = self->dbInfo->get().logSystemConfig.recruitmentID == logData->recruitmentID; if (found) { if (self->dbInfo->get().logSystemConfig.isNextGenerationOf(recoverFrom)) { logSystem->set(ILogSystem::fromOldLogSystemConfig( logData->logId, self->dbInfo->get().myLocality, self->dbInfo->get().logSystemConfig )); } else if (self->dbInfo->get().logSystemConfig.isEqualIds(recoverFrom)) { logSystem->set(ILogSystem::fromLogSystemConfig( logData->logId, self->dbInfo->get().myLocality, self->dbInfo->get().logSystemConfig, false, true )); } else if (self->dbInfo->get().recoveryState >= RecoveryState::ACCEPTING_COMMITS) { logSystem->set(ILogSystem::fromLogSystemConfig( logData->logId, self->dbInfo->get().myLocality, self->dbInfo->get().logSystemConfig, true )); } else { found = false; } } if (!found) { logSystem->set(Reference()); } else { logData->logSystem->get()->pop(logData->logRouterPoppedVersion, logData->remoteTag, logData->durableKnownCommittedVersion, logData->locality); } TraceEvent("TLogUpdate", self->dbgid).detail("LogId", logData->logId).detail("RecruitmentID", logData->recruitmentID).detail("DbRecruitmentID", self->dbInfo->get().logSystemConfig.recruitmentID).detail("RecoverFrom", recoverFrom.toString()).detail("DbInfo", self->dbInfo->get().logSystemConfig.toString()).detail("Found", found).detail("LogSystem", (bool) logSystem->get() ).detail("RecoveryState", (int)self->dbInfo->get().recoveryState); for (const auto& it : self->dbInfo->get().logSystemConfig.oldTLogs) { TraceEvent("TLogUpdateOld", self->dbgid).detail("LogId", logData->logId).detail("DbInfo", it.toString()); } wait( self->dbInfo->onChange() ); } } void stopAllTLogs( TLogData* self, UID newLogId ) { for(auto it : self->id_data) { if( !it.second->stopped ) { TraceEvent("TLogStoppedByNewRecruitment", self->dbgid).detail("LogId", it.second->logId).detail("StoppedId", it.first.toString()).detail("RecruitedId", newLogId).detail("EndEpoch", it.second->logSystem->get().getPtr() != 0); if(!it.second->isPrimary && it.second->logSystem->get()) { it.second->removed = it.second->removed && it.second->logSystem->get()->endEpoch(); } if(it.second->committingQueue.canBeSet()) { it.second->committingQueue.sendError(worker_removed()); } } it.second->stopped = true; if(!it.second->recoveryComplete.isSet()) { it.second->recoveryComplete.sendError(end_of_stream()); } it.second->stopCommit.trigger(); } } // Start the tLog role for a worker ACTOR Future tLogStart( TLogData* self, InitializeTLogRequest req, LocalityData locality ) { state TLogInterface recruited(self->dbgid, locality); recruited.initEndpoints(); DUMPTOKEN( recruited.peekMessages ); DUMPTOKEN( recruited.popMessages ); DUMPTOKEN( recruited.commit ); DUMPTOKEN( recruited.lock ); DUMPTOKEN( recruited.getQueuingMetrics ); DUMPTOKEN( recruited.confirmRunning ); stopAllTLogs(self, recruited.id()); bool recovering = (req.recoverFrom.logSystemType == LogSystemType::tagPartitioned); state Reference logData = Reference( new LogData(self, recruited, req.remoteTag, req.isPrimary, req.logRouterTags, req.txsTags, req.recruitmentID, currentProtocolVersion, req.spillType, req.allTags, recovering ? "Recovered" : "Recruited") ); self->id_data[recruited.id()] = logData; logData->locality = req.locality; logData->recoveryCount = req.epoch; logData->removed = rejoinMasters(self, recruited, req.epoch, Future(Void()), req.isPrimary); self->popOrder.push_back(recruited.id()); self->spillOrder.push_back(recruited.id()); TraceEvent("TLogStart", logData->logId); state Future updater; state bool pulledRecoveryVersions = false; try { if( logData->removed.isReady() ) { throw logData->removed.getError(); } if (recovering) { logData->unrecoveredBefore = req.startVersion; logData->recoveredAt = req.recoverAt; logData->knownCommittedVersion = req.startVersion - 1; logData->persistentDataVersion = logData->unrecoveredBefore - 1; logData->persistentDataDurableVersion = logData->unrecoveredBefore - 1; logData->queueCommittedVersion.set( logData->unrecoveredBefore - 1 ); logData->version.set( logData->unrecoveredBefore - 1 ); logData->unpoppedRecoveredTags = req.allTags.size(); wait( initPersistentState( self, logData ) || logData->removed ); TraceEvent("TLogRecover", self->dbgid).detail("LogId", logData->logId).detail("At", req.recoverAt).detail("Known", req.knownCommittedVersion).detail("Unrecovered", logData->unrecoveredBefore).detail("Tags", describe(req.recoverTags)).detail("Locality", req.locality).detail("LogRouterTags", logData->logRouterTags); if(logData->recoveryComplete.isSet()) { throw worker_removed(); } updater = updateLogSystem(self, logData, req.recoverFrom, logData->logSystem); logData->initialized = true; self->newLogData.trigger(); if((req.isPrimary || req.recoverFrom.logRouterTags == 0) && !logData->stopped && logData->unrecoveredBefore <= req.recoverAt) { if(req.recoverFrom.logRouterTags > 0 && req.locality != tagLocalitySatellite) { logData->logRouterPopToVersion = req.recoverAt; std::vector tags; tags.push_back(logData->remoteTag); wait(pullAsyncData(self, logData, tags, logData->unrecoveredBefore, req.recoverAt, true) || logData->removed); } else if(!req.recoverTags.empty()) { ASSERT(logData->unrecoveredBefore > req.knownCommittedVersion); wait(pullAsyncData(self, logData, req.recoverTags, req.knownCommittedVersion + 1, req.recoverAt, false) || logData->removed); } pulledRecoveryVersions = true; logData->knownCommittedVersion = req.recoverAt; } if((req.isPrimary || req.recoverFrom.logRouterTags == 0) && logData->version.get() < req.recoverAt && !logData->stopped) { // Log the changes to the persistent queue, to be committed by commitQueue() TLogQueueEntryRef qe; qe.version = req.recoverAt; qe.knownCommittedVersion = logData->knownCommittedVersion; qe.messages = StringRef(); qe.id = logData->logId; self->persistentQueue->push( qe, logData ); self->diskQueueCommitBytes += qe.expectedSize(); if( self->diskQueueCommitBytes > SERVER_KNOBS->MAX_QUEUE_COMMIT_BYTES ) { self->largeDiskQueueCommitBytes.set(true); } logData->version.set( req.recoverAt ); } if(logData->recoveryComplete.isSet()) { throw worker_removed(); } logData->addActor.send( respondToRecovered( recruited, logData->recoveryComplete ) ); } else { // Brand new tlog, initialization has already been done by caller wait( initPersistentState( self, logData ) || logData->removed ); if(logData->recoveryComplete.isSet()) { throw worker_removed(); } logData->initialized = true; self->newLogData.trigger(); logData->recoveryComplete.send(Void()); } wait(logData->committingQueue.getFuture() || logData->removed ); } catch( Error &e ) { req.reply.sendError(recruitment_failed()); if( e.code() != error_code_worker_removed ) { throw; } wait( delay(0.0) ); // if multiple recruitment requests were already in the promise stream make sure they are all started before any are removed removeLog(self, logData); return Void(); } req.reply.send( recruited ); TraceEvent("TLogReady", logData->logId).detail("AllTags", describe(req.allTags)).detail("Locality", logData->locality); updater = Void(); wait( tLogCore( self, logData, recruited, pulledRecoveryVersions ) ); return Void(); } ACTOR Future startSpillingInTenSeconds(TLogData* self, UID tlogId, Reference> activeSharedTLog) { wait(delay(10)); if (activeSharedTLog->get() != tlogId) { // TODO: This should fully spill, but currently doing so will cause us to no longer update poppedVersion // and QuietDatabase will hang thinking our TLog is behind. TraceEvent("SharedTLogBeginSpilling", self->dbgid).detail("NowActive", activeSharedTLog->get()); self->targetVolatileBytes = SERVER_KNOBS->REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT * 2; } else { TraceEvent("SharedTLogSkipSpilling", self->dbgid).detail("NowActive", activeSharedTLog->get()); } return Void(); } // New tLog (if !recoverFrom.size()) or restore from network ACTOR Future tLog( IKeyValueStore* persistentData, IDiskQueue* persistentQueue, Reference> db, LocalityData locality, PromiseStream tlogRequests, UID tlogId, UID workerID, bool restoreFromDisk, Promise oldLog, Promise recovered, std::string folder, Reference> degraded, Reference> activeSharedTLog ) { state TLogData self( tlogId, workerID, persistentData, persistentQueue, db, degraded, folder ); state Future error = actorCollection( self.sharedActors.getFuture() ); TraceEvent("SharedTlog", tlogId); try { if(restoreFromDisk) { wait( restorePersistentState( &self, locality, oldLog, recovered, tlogRequests ) ); } else { wait( ioTimeoutError( checkEmptyQueue(&self) && checkRecovered(&self), SERVER_KNOBS->TLOG_MAX_CREATE_DURATION ) ); } //Disk errors need a chance to kill this actor. wait(delay(0.000001)); if(recovered.canBeSet()) recovered.send(Void()); self.sharedActors.send( commitQueue(&self) ); self.sharedActors.send( updateStorageLoop(&self) ); self.sharedActors.send( traceRole(Role::SHARED_TRANSACTION_LOG, tlogId) ); state Future activeSharedChange = Void(); loop { choose { when ( InitializeTLogRequest req = waitNext(tlogRequests.getFuture() ) ) { if( !self.tlogCache.exists( req.recruitmentID ) ) { self.tlogCache.set( req.recruitmentID, req.reply.getFuture() ); self.sharedActors.send( self.tlogCache.removeOnReady( req.recruitmentID, tLogStart( &self, req, locality ) ) ); } else { forwardPromise( req.reply, self.tlogCache.get( req.recruitmentID ) ); } } when ( wait( error ) ) { throw internal_error(); } when ( wait( activeSharedChange ) ) { if (activeSharedTLog->get() == tlogId) { TraceEvent("SharedTLogNowActive", self.dbgid).detail("NowActive", activeSharedTLog->get()); self.targetVolatileBytes = SERVER_KNOBS->TLOG_SPILL_THRESHOLD; } else { stopAllTLogs(&self, tlogId); TraceEvent("SharedTLogQueueSpilling", self.dbgid).detail("NowActive", activeSharedTLog->get()); self.sharedActors.send( startSpillingInTenSeconds(&self, tlogId, activeSharedTLog) ); } activeSharedChange = activeSharedTLog->onChange(); } } } } catch (Error& e) { self.terminated.send(Void()); TraceEvent("TLogError", tlogId).error(e, true); if(recovered.canBeSet()) recovered.send(Void()); while(!tlogRequests.isEmpty()) { tlogRequests.getFuture().pop().reply.sendError(recruitment_failed()); } for( auto& it : self.id_data ) { if(!it.second->recoveryComplete.isSet()) { it.second->recoveryComplete.sendError(end_of_stream()); } } if (tlogTerminated( &self, persistentData, self.persistentQueue, e )) { return Void(); } else { throw; } } } // UNIT TESTS struct DequeAllocatorStats { static int64_t allocatedBytes; }; int64_t DequeAllocatorStats::allocatedBytes = 0; template struct DequeAllocator : std::allocator { template struct rebind { typedef DequeAllocator other; }; DequeAllocator() {} template DequeAllocator(DequeAllocator const& u) : std::allocator(u) {} T* allocate(std::size_t n, std::allocator::const_pointer hint = 0) { DequeAllocatorStats::allocatedBytes += n * sizeof(T); //fprintf(stderr, "Allocating %lld objects for %lld bytes (total allocated: %lld)\n", n, n * sizeof(T), DequeAllocatorStats::allocatedBytes); return std::allocator::allocate(n, hint); } void deallocate(T* p, std::size_t n) { DequeAllocatorStats::allocatedBytes -= n * sizeof(T); //fprintf(stderr, "Deallocating %lld objects for %lld bytes (total allocated: %lld)\n", n, n * sizeof(T), DequeAllocatorStats::allocatedBytes); return std::allocator::deallocate(p, n); } }; TEST_CASE("/fdbserver/tlogserver/VersionMessagesOverheadFactor" ) { typedef std::pair TestType; // type used by versionMessages for(int i = 1; i < 9; ++i) { for(int j = 0; j < 20; ++j) { DequeAllocatorStats::allocatedBytes = 0; DequeAllocator allocator; std::deque> d(allocator); int numElements = deterministicRandom()->randomInt(pow(10, i-1), pow(10, i)); for(int k = 0; k < numElements; ++k) { d.push_back(TestType()); } int removedElements = 0;//deterministicRandom()->randomInt(0, numElements); // FIXME: the overhead factor does not accurately account for removal! for(int k = 0; k < removedElements; ++k) { d.pop_front(); } int64_t dequeBytes = DequeAllocatorStats::allocatedBytes + sizeof(std::deque); int64_t insertedBytes = (numElements-removedElements) * sizeof(TestType); double overheadFactor = std::max(insertedBytes, dequeBytes-10000) / insertedBytes; // We subtract 10K here as an estimated upper bound for the fixed cost of an std::deque //fprintf(stderr, "%d elements (%d inserted, %d removed):\n", numElements-removedElements, numElements, removedElements); //fprintf(stderr, "Allocated %lld bytes to store %lld bytes (%lf overhead factor)\n", dequeBytes, insertedBytes, overheadFactor); ASSERT(overheadFactor * 1024 <= SERVER_KNOBS->VERSION_MESSAGES_OVERHEAD_FACTOR_1024THS); } } return Void(); }