/* * DeltaTree.h * * This source file is part of the FoundationDB open source project * * Copyright 2013-2018 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "flow/flow.h" #include "flow/Arena.h" #include "fdbclient/FDBTypes.h" #include "fdbserver/Knobs.h" #include typedef uint64_t Word; // Get the number of prefix bytes that are the same between a and b, up to their common length of cl static inline int commonPrefixLength(uint8_t const* ap, uint8_t const* bp, int cl) { int i = 0; const int wordEnd = cl - sizeof(Word) + 1; for (; i < wordEnd; i += sizeof(Word)) { Word a = *(Word*)ap; Word b = *(Word*)bp; if (a != b) { return i + ctzll(a ^ b) / 8; } ap += sizeof(Word); bp += sizeof(Word); } for (; i < cl; i++) { if (*ap != *bp) { return i; } ++ap; ++bp; } return cl; } static inline int commonPrefixLength(const StringRef& a, const StringRef& b) { return commonPrefixLength(a.begin(), b.begin(), std::min(a.size(), b.size())); } static inline int commonPrefixLength(const StringRef& a, const StringRef& b, int skipLen) { return commonPrefixLength(a.begin() + skipLen, b.begin() + skipLen, std::min(a.size(), b.size()) - skipLen); } // This appears to be the fastest version static int lessOrEqualPowerOfTwo(int n) { int p; for (p = 1; p + p <= n; p += p) ; return p; } /* static int _lessOrEqualPowerOfTwo(uint32_t n) { if(n == 0) return n; int trailing = __builtin_ctz(n); int leading = __builtin_clz(n); if(trailing + leading == ((sizeof(n) * 8) - 1)) return n; return 1 << ( (sizeof(n) * 8) - leading - 1); } static int __lessOrEqualPowerOfTwo(unsigned int n) { int p = 1; for(; p <= n; p <<= 1); return p >> 1; } */ static int perfectSubtreeSplitPoint(int subtree_size) { // return the inorder index of the root node in a subtree of the given size // consistent with the resulting binary search tree being "perfect" (having minimal height // and all missing nodes as far right as possible). // There has to be a simpler way to do this. int s = lessOrEqualPowerOfTwo((subtree_size - 1) / 2 + 1) - 1; return std::min(s * 2 + 1, subtree_size - s - 1); } static int perfectSubtreeSplitPointCached(int subtree_size) { static uint16_t* points = nullptr; static const int max = 500; if (points == nullptr) { points = new uint16_t[max]; for (int i = 0; i < max; ++i) points[i] = perfectSubtreeSplitPoint(i); } if (subtree_size < max) return points[subtree_size]; return perfectSubtreeSplitPoint(subtree_size); } // Delta Tree is a memory mappable binary tree of T objects such that each node's item is // stored as a Delta which can reproduce the node's T item given the node's greatest // lesser ancestor and the node's least greater ancestor. // // The Delta type is intended to make use of ordered prefix compression and borrow all // available prefix bytes from the ancestor T which shares the most prefix bytes with // the item T being encoded. // // T requirements // // Must be compatible with Standalone and must implement the following additional methods: // // // Writes to d a delta which can create *this from base // // commonPrefix can be passed in if known // void writeDelta(dT &d, const T &base, int commonPrefix = -1) const; // // // Compare *this to t, returns < 0 for less than, 0 for equal, > 0 for greater than // // The first skipLen bytes can be assumed to be equal // int compare(const T &rhs, int skipLen) const; // // // Get the common prefix bytes between *this and base // // skip is a hint of how many prefix bytes are already known to be the same // int getCommonPrefixLen(const T &base, int skip) const; // // // Returns the size of the delta object needed to make *this from base // // TODO: Explain contract required for deltaSize to be used to predict final // // balanced tree size incrementally while adding sorted items to a build set // int deltaSize(const T &base) const; // // DeltaT requirements // // // Returns the size of this dT instance // int size(); // // // Returns the T created by applying the delta to prev or next // T apply(const T &base, Arena &localStorage) const; // // // Stores a boolean which DeltaTree will later use to determine the base node for a node's delta // void setPrefixSource(bool val); // // // Retrieves the previously stored boolean // bool getPrefixSource() const; // #pragma pack(push, 1) template struct DeltaTree { struct Node { union { struct { uint32_t left; uint32_t right; } largeOffsets; struct { uint16_t left; uint16_t right; } smallOffsets; }; static int headerSize(bool large) { return large ? sizeof(largeOffsets) : sizeof(smallOffsets); } inline DeltaT& delta(bool large) { return large ? *(DeltaT*)(&largeOffsets + 1) : *(DeltaT*)(&smallOffsets + 1); }; inline const DeltaT& delta(bool large) const { return large ? *(const DeltaT*)(&largeOffsets + 1) : *(const DeltaT*)(&smallOffsets + 1); }; Node* resolvePointer(int offset) const { return offset == 0 ? nullptr : (Node*)((uint8_t*)this + offset); } Node* rightChild(bool large) const { return resolvePointer(large ? largeOffsets.right : smallOffsets.right); } Node* leftChild(bool large) const { return resolvePointer(large ? largeOffsets.left : smallOffsets.left); } void setRightChildOffset(bool large, int offset) { if (large) { largeOffsets.right = offset; } else { smallOffsets.right = offset; } } void setLeftChildOffset(bool large, int offset) { if (large) { largeOffsets.left = offset; } else { smallOffsets.left = offset; } } int size(bool large) const { return delta(large).size() + (large ? sizeof(smallOffsets) : sizeof(largeOffsets)); } }; static constexpr int SmallSizeLimit = std::numeric_limits::max(); static constexpr int LargeTreePerNodeExtraOverhead = sizeof(Node::largeOffsets) - sizeof(Node::smallOffsets); struct { uint16_t numItems; // Number of items in the tree. uint32_t nodeBytesUsed; // Bytes used by nodes (everything after the tree header) uint32_t nodeBytesFree; // Bytes left at end of tree to expand into uint32_t nodeBytesDeleted; // Delta bytes deleted from tree. Note that some of these bytes could be borrowed by // descendents. uint8_t initialHeight; // Height of tree as originally built uint8_t maxHeight; // Maximum height of tree after any insertion. Value of 0 means no insertions done. bool largeNodes; // Node size, can be calculated as capacity > SmallSizeLimit but it will be used a lot }; #pragma pack(pop) inline Node& root() { return *(Node*)(this + 1); } inline const Node& root() const { return *(const Node*)(this + 1); } int size() const { return sizeof(DeltaTree) + nodeBytesUsed; } int capacity() const { return size() + nodeBytesFree; } inline Node& newNode() { return *(Node*)((uint8_t*)this + size()); } public: // Get count of total overhead bytes (everything but the user-formatted Delta) for a tree given size n static int emptyTreeSize() { return sizeof(DeltaTree); } struct DecodedNode { DecodedNode() {} // construct root node DecodedNode(Node* raw, const T* prev, const T* next, Arena& arena, bool large) : raw(raw), parent(nullptr), otherAncestor(nullptr), leftChild(nullptr), rightChild(nullptr), prev(prev), next(next), item(raw->delta(large).apply(raw->delta(large).getPrefixSource() ? *prev : *next, arena)), large(large) { // printf("DecodedNode1 raw=%p delta=%s\n", raw, raw->delta(large).toString().c_str()); } // Construct non-root node // wentLeft indicates that we've gone left to get to the raw node. DecodedNode(Node* raw, DecodedNode* parent, bool wentLeft, Arena& arena) : parent(parent), large(parent->large), otherAncestor(wentLeft ? parent->getPrevAncestor() : parent->getNextAncestor()), prev(wentLeft ? parent->prev : &parent->item), next(wentLeft ? &parent->item : parent->next), leftChild(nullptr), rightChild(nullptr), raw(raw), item(raw->delta(large).apply(raw->delta(large).getPrefixSource() ? *prev : *next, arena)) { // printf("DecodedNode2 raw=%p delta=%s\n", raw, raw->delta(large).toString().c_str()); } // Returns true if otherAncestor is the previous ("greatest lesser") ancestor bool otherAncestorPrev() const { return parent && parent->leftChild == this; } // Returns true if otherAncestor is the next ("least greator") ancestor bool otherAncestorNext() const { return parent && parent->rightChild == this; } DecodedNode* getPrevAncestor() const { return otherAncestorPrev() ? otherAncestor : parent; } DecodedNode* getNextAncestor() const { return otherAncestorNext() ? otherAncestor : parent; } DecodedNode* jumpUpNext(DecodedNode* root, bool& othersChild) const { if (parent != nullptr) { if (parent->rightChild == this) { return otherAncestor; } if (otherAncestor != nullptr) { othersChild = true; return otherAncestor->rightChild; } } return parent; } DecodedNode* jumpUpPrev(DecodedNode* root, bool& othersChild) const { if (parent != nullptr) { if (parent->leftChild == this) { return otherAncestor; } if (otherAncestor != nullptr) { othersChild = true; return otherAncestor->leftChild; } } return parent; } DecodedNode* jumpNext(DecodedNode* root) const { if (otherAncestorNext()) { return (otherAncestor != nullptr) ? otherAncestor : rightChild; } else { if (this == root) { return rightChild; } return (otherAncestor != nullptr) ? otherAncestor->rightChild : root; } } DecodedNode* jumpPrev(DecodedNode* root) const { if (otherAncestorPrev()) { return (otherAncestor != nullptr) ? otherAncestor : leftChild; } else { if (this == root) { return leftChild; } return (otherAncestor != nullptr) ? otherAncestor->leftChild : root; } } void setDeleted(bool deleted) { raw->delta(large).setDeleted(deleted); } bool isDeleted() const { return raw->delta(large).getDeleted(); } bool large; // Node size Node* raw; DecodedNode* parent; DecodedNode* otherAncestor; DecodedNode* leftChild; DecodedNode* rightChild; const T* prev; // greatest ancestor to the left, or tree lower bound const T* next; // least ancestor to the right, or tree upper bound T item; DecodedNode* getRightChild(Arena& arena) { if (rightChild == nullptr) { Node* n = raw->rightChild(large); if (n != nullptr) { rightChild = new (arena) DecodedNode(n, this, false, arena); } } return rightChild; } DecodedNode* getLeftChild(Arena& arena) { if (leftChild == nullptr) { Node* n = raw->leftChild(large); if (n != nullptr) { leftChild = new (arena) DecodedNode(n, this, true, arena); } } return leftChild; } }; struct Cursor; // A Mirror is an accessor for a DeltaTree which allows insertion and reading. Both operations are done // using cursors which point to and share nodes in an tree that is built on-demand and mirrors the compressed // structure but with fully reconstituted items (which reference DeltaTree bytes or Arena bytes, based // on the behavior of T::Delta::apply()) struct Mirror : FastAllocated { friend class Cursor; Mirror(const void* treePtr = nullptr, const T* lowerBound = nullptr, const T* upperBound = nullptr) : tree((DeltaTree*)treePtr), lower(lowerBound), upper(upperBound) { // TODO: Remove these copies into arena and require users of Mirror to keep prev and next alive during its // lifetime lower = new (arena) T(arena, *lower); upper = new (arena) T(arena, *upper); root = (tree->nodeBytesUsed == 0) ? nullptr : new (arena) DecodedNode(&tree->root(), lower, upper, arena, tree->largeNodes); } const T* lowerBound() const { return lower; } const T* upperBound() const { return upper; } DeltaTree* tree; private: Arena arena; DecodedNode* root; const T* lower; const T* upper; public: Cursor getCursor() { return Cursor(this); } // Try to insert k into the DeltaTree, updating byte counts and initialHeight if they // have changed (they won't if k already exists in the tree but was deleted). // Returns true if successful, false if k does not fit in the space available // or if k is already in the tree (and was not already deleted). bool insert(const T& k, int skipLen = 0, int maxHeightAllowed = std::numeric_limits::max()) { int height = 1; DecodedNode* n = root; bool addLeftChild = false; while (n != nullptr) { int cmp = k.compare(n->item, skipLen); if (cmp >= 0) { // If we found an item identical to k then if it is deleted, undeleted it, // otherwise fail if (cmp == 0) { auto& d = n->raw->delta(tree->largeNodes); if (d.getDeleted()) { d.setDeleted(false); ++tree->numItems; return true; } else { return false; } } DecodedNode* right = n->getRightChild(arena); if (right == nullptr) { break; } n = right; } else { DecodedNode* left = n->getLeftChild(arena); if (left == nullptr) { addLeftChild = true; break; } n = left; } ++height; } if (height > maxHeightAllowed) { return false; } // Insert k as the left or right child of n, depending on the value of addLeftChild // First, see if it will fit. const T* prev = addLeftChild ? n->prev : &n->item; const T* next = addLeftChild ? &n->item : n->next; int common = prev->getCommonPrefixLen(*next, skipLen); int commonWithPrev = k.getCommonPrefixLen(*prev, common); int commonWithNext = k.getCommonPrefixLen(*next, common); bool basePrev = commonWithPrev >= commonWithNext; int commonPrefix = basePrev ? commonWithPrev : commonWithNext; const T* base = basePrev ? prev : next; int deltaSize = k.deltaSize(*base, commonPrefix, false); int nodeSpace = deltaSize + Node::headerSize(tree->largeNodes); if (nodeSpace > tree->nodeBytesFree) { return false; } DecodedNode* newNode = new (arena) DecodedNode(); Node* raw = &tree->newNode(); raw->setLeftChildOffset(tree->largeNodes, 0); raw->setRightChildOffset(tree->largeNodes, 0); int newOffset = (uint8_t*)raw - (uint8_t*)n->raw; // printf("Inserting %s at offset %d\n", k.toString().c_str(), newOffset); if (addLeftChild) { n->leftChild = newNode; n->raw->setLeftChildOffset(tree->largeNodes, newOffset); } else { n->rightChild = newNode; n->raw->setRightChildOffset(tree->largeNodes, newOffset); } newNode->parent = n; newNode->large = tree->largeNodes; newNode->leftChild = nullptr; newNode->rightChild = nullptr; newNode->raw = raw; newNode->otherAncestor = addLeftChild ? n->getPrevAncestor() : n->getNextAncestor(); newNode->prev = prev; newNode->next = next; int written = k.writeDelta(raw->delta(tree->largeNodes), *base, commonPrefix); ASSERT(deltaSize == written); raw->delta(tree->largeNodes).setPrefixSource(basePrev); // Initialize node's item from the delta (instead of copying into arena) to avoid unnecessary arena space // usage newNode->item = raw->delta(tree->largeNodes).apply(*base, arena); tree->nodeBytesUsed += nodeSpace; tree->nodeBytesFree -= nodeSpace; ++tree->numItems; // Update max height of the tree if necessary if (height > tree->maxHeight) { tree->maxHeight = height; } return true; } // Erase k by setting its deleted flag to true. Returns true only if k existed bool erase(const T& k, int skipLen = 0) { Cursor c = getCursor(); int cmp = c.seek(k); // If exactly k is found if (cmp == 0 && !c.node->isDeleted()) { c.erase(); return true; } return false; } }; // Cursor provides a way to seek into a DeltaTree and iterate over its contents // All Cursors from a Mirror share the same decoded node 'cache' (tree of DecodedNodes) struct Cursor { Cursor() : mirror(nullptr), node(nullptr) {} Cursor(Mirror* r) : mirror(r), node(mirror->root) {} Mirror* mirror; DecodedNode* node; bool valid() const { return node != nullptr; } const T& get() const { return node->item; } const T& getOrUpperBound() const { return valid() ? node->item : *mirror->upperBound(); } bool operator==(const Cursor& rhs) const { return node == rhs.node; } bool operator!=(const Cursor& rhs) const { return node != rhs.node; } void erase() { node->setDeleted(true); --mirror->tree->numItems; moveNext(); } // TODO: Make hint-based seek() use the hint logic in this, which is better and actually improves seek times, // then remove this function. bool seekLessThanOrEqualOld(const T& s, int skipLen, const Cursor* pHint, int initialCmp) { DecodedNode* n; // If there's a hint position, use it // At the end of using the hint, if n is valid it should point to a node which has not yet been compared to. if (pHint != nullptr && pHint->node != nullptr) { n = pHint->node; if (initialCmp == 0) { node = n; return _hideDeletedBackward(); } if (initialCmp > 0) { node = n; while (n != nullptr) { n = n->jumpNext(mirror->root); if (n == nullptr) { break; } int cmp = s.compare(n->item, skipLen); if (cmp > 0) { node = n; continue; } if (cmp == 0) { node = n; n = nullptr; } else { n = n->leftChild; } break; } } else { while (n != nullptr) { n = n->jumpPrev(mirror->root); if (n == nullptr) { break; } int cmp = s.compare(n->item, skipLen); if (cmp >= 0) { node = n; n = (cmp == 0) ? nullptr : n->rightChild; break; } } } } else { // Start at root, clear current position n = mirror->root; node = nullptr; } while (n != nullptr) { int cmp = s.compare(n->item, skipLen); if (cmp < 0) { n = n->getLeftChild(mirror->arena); } else { // n <= s so store it in node as a potential result node = n; if (cmp == 0) { break; } n = n->getRightChild(mirror->arena); } } return _hideDeletedBackward(); } // The seek methods, of the form seek[Less|Greater][orEqual](...) are very similar. // They attempt move the cursor to the [Greatest|Least] item, based on the name of the function. // Then will not "see" erased records. // If successful, they return true, and if not then false a while making the cursor invalid. // These methods forward arguments to the seek() overloads, see those for argument descriptions. template bool seekLessThan(Args... args) { int cmp = seek(args...); if (cmp < 0 || (cmp == 0 && node != nullptr)) { movePrev(); } return _hideDeletedBackward(); } template bool seekLessThanOrEqual(Args... args) { int cmp = seek(args...); if (cmp < 0) { movePrev(); } return _hideDeletedBackward(); } template bool seekGreaterThan(Args... args) { int cmp = seek(args...); if (cmp > 0 || (cmp == 0 && node != nullptr)) { moveNext(); } return _hideDeletedForward(); } template bool seekGreaterThanOrEqual(Args... args) { int cmp = seek(args...); if (cmp > 0) { moveNext(); } return _hideDeletedForward(); } // seek() moves the cursor to a node containing s or the node that would be the parent of s if s were to be // added to the tree. If the tree was empty, the cursor will be invalid and the return value will be 0. // Otherwise, returns the result of s.compare(item at cursor position) // Does not skip/avoid deleted nodes. int seek(const T& s, int skipLen = 0) { DecodedNode* n = mirror->root; node = nullptr; int cmp = 0; while (n != nullptr) { node = n; cmp = s.compare(n->item, skipLen); if (cmp == 0) { break; } n = (cmp > 0) ? n->getRightChild(mirror->arena) : n->getLeftChild(mirror->arena); } return cmp; } // Same usage as seek() but with a hint of a cursor, which can't be null, whose starting position // should be close to s in the tree to improve seek time. // initialCmp should be logically equivalent to s.compare(pHint->get()) or 0, in which // case the comparison will be done in this method. // TODO: This is broken, it's not faster than not using a hint. See Make thisUnfortunately in a microbenchmark // attempting to approximate a common use case, this version of using a cursor hint is actually slower than not // using a hint. int seek(const T& s, int skipLen, const Cursor* pHint, int initialCmp = 0) { DecodedNode* n = mirror->root; node = nullptr; int cmp; // If there's a hint position, use it // At the end of using the hint, if n is valid it should point to a node which has not yet been compared to. if (pHint->node != nullptr) { n = pHint->node; if (initialCmp == 0) { initialCmp = s.compare(pHint->get()); } cmp = initialCmp; while (true) { node = n; if (cmp == 0) { return cmp; } // Attempt to jump up and past s bool othersChild = false; n = (initialCmp > 0) ? n->jumpUpNext(mirror->root, othersChild) : n->jumpUpPrev(mirror->root, othersChild); if (n == nullptr) { n = (cmp > 0) ? node->rightChild : node->leftChild; break; } // Compare s to the node jumped to cmp = s.compare(n->item, skipLen); // n is on the oposite side of s than node is, then n is too far. if (cmp != 0 && ((initialCmp ^ cmp) < 0)) { if (!othersChild) { n = (cmp < 0) ? node->rightChild : node->leftChild; } break; } } } else { // Start at root, clear current position n = mirror->root; node = nullptr; cmp = 0; } // Search starting from n, which is either the root or the result of applying the hint while (n != nullptr) { node = n; cmp = s.compare(n->item, skipLen); if (cmp == 0) { break; } n = (cmp > 0) ? n->getRightChild(mirror->arena) : n->getLeftChild(mirror->arena); } return cmp; } bool moveFirst() { DecodedNode* n = mirror->root; node = n; while (n != nullptr) { n = n->getLeftChild(mirror->arena); if (n != nullptr) node = n; } return _hideDeletedForward(); } bool moveLast() { DecodedNode* n = mirror->root; node = n; while (n != nullptr) { n = n->getRightChild(mirror->arena); if (n != nullptr) node = n; } return _hideDeletedBackward(); } // Try to move to next node, sees deleted nodes. void _moveNext() { // Try to go right DecodedNode* n = node->getRightChild(mirror->arena); // If we couldn't go right, then the answer is our next ancestor if (n == nullptr) { node = node->getNextAncestor(); } else { // Go left as far as possible while (n != nullptr) { node = n; n = n->getLeftChild(mirror->arena); } } } // Try to move to previous node, sees deleted nodes. void _movePrev() { // Try to go left DecodedNode* n = node->getLeftChild(mirror->arena); // If we couldn't go left, then the answer is our prev ancestor if (n == nullptr) { node = node->getPrevAncestor(); } else { // Go right as far as possible while (n != nullptr) { node = n; n = n->getRightChild(mirror->arena); } } } bool moveNext() { _moveNext(); return _hideDeletedForward(); } bool movePrev() { _movePrev(); return _hideDeletedBackward(); } private: bool _hideDeletedBackward() { while (node != nullptr && node->isDeleted()) { _movePrev(); } return node != nullptr; } bool _hideDeletedForward() { while (node != nullptr && node->isDeleted()) { _moveNext(); } return node != nullptr; } }; // Returns number of bytes written int build(int spaceAvailable, const T* begin, const T* end, const T* prev, const T* next) { largeNodes = spaceAvailable > SmallSizeLimit; int count = end - begin; numItems = count; nodeBytesDeleted = 0; initialHeight = (uint8_t)log2(count) + 1; maxHeight = 0; // The boundary leading to the new page acts as the last time we branched right if (begin != end) { nodeBytesUsed = buildSubtree(root(), begin, end, prev, next, prev->getCommonPrefixLen(*next, 0)); } else { nodeBytesUsed = 0; } nodeBytesFree = spaceAvailable - size(); return size(); } private: int buildSubtree(Node& node, const T* begin, const T* end, const T* prev, const T* next, int subtreeCommon) { // printf("build: %s to %s\n", begin->toString().c_str(), (end - 1)->toString().c_str()); // printf("build: root at %p Node::headerSize %d delta at %p \n", &root, Node::headerSize(largeNodes), // &node.delta(largeNodes)); ASSERT(end != begin); int count = end - begin; // Find key to be stored in root int mid = perfectSubtreeSplitPointCached(count); const T& item = begin[mid]; int commonWithPrev = item.getCommonPrefixLen(*prev, subtreeCommon); int commonWithNext = item.getCommonPrefixLen(*next, subtreeCommon); bool prefixSourcePrev; int commonPrefix; const T* base; if (commonWithPrev >= commonWithNext) { prefixSourcePrev = true; commonPrefix = commonWithPrev; base = prev; } else { prefixSourcePrev = false; commonPrefix = commonWithNext; base = next; } int deltaSize = item.writeDelta(node.delta(largeNodes), *base, commonPrefix); node.delta(largeNodes).setPrefixSource(prefixSourcePrev); // printf("Serialized %s to %p\n", item.toString().c_str(), &root.delta(largeNodes)); // Continue writing after the serialized Delta. uint8_t* wptr = (uint8_t*)&node.delta(largeNodes) + deltaSize; // Serialize left child if (count > 1) { wptr += buildSubtree(*(Node*)wptr, begin, begin + mid, prev, &item, commonWithPrev); node.setLeftChildOffset(largeNodes, Node::headerSize(largeNodes) + deltaSize); } else { node.setLeftChildOffset(largeNodes, 0); } // Serialize right child if (count > 2) { node.setRightChildOffset(largeNodes, wptr - (uint8_t*)&node); wptr += buildSubtree(*(Node*)wptr, begin + mid + 1, end, &item, next, commonWithNext); } else { node.setRightChildOffset(largeNodes, 0); } return wptr - (uint8_t*)&node; } };