/*
 * network.h
 *
 * This source file is part of the FoundationDB open source project
 *
 * Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef FLOW_OPENNETWORK_H
#define FLOW_OPENNETWORK_H
#pragma once

#include <array>
#include <string>
#include <stdint.h>
#include <variant>
#include "boost/asio.hpp"
#ifndef TLS_DISABLED
#include "boost/asio/ssl.hpp"
#endif
#include "flow/Arena.h"
#include "flow/IRandom.h"
#include "flow/Trace.h"

enum class TaskPriority {
	Max = 1000000,
	RunLoop = 30000,
	ASIOReactor = 20001,
	RunCycleFunction = 20000,
	FlushTrace = 10500,
	WriteSocket = 10000,
	PollEIO = 9900,
	DiskIOComplete = 9150,
	LoadBalancedEndpoint = 9000,
	ReadSocket = 9000,
	AcceptSocket = 8950,
	Handshake = 8900,
	CoordinationReply = 8810,
	Coordination = 8800,
	FailureMonitor = 8700,
	ResolutionMetrics = 8700,
	Worker = 8660,
	ClusterControllerWorker = 8656,
	ClusterControllerRecruit = 8654,
	ClusterControllerRegister = 8652,
	ClusterController = 8650,
	MasterTLogRejoin = 8646,
	ProxyStorageRejoin = 8645,
	TLogQueuingMetrics = 8620,
	TLogPop = 8610,
	TLogPeekReply = 8600,
	TLogPeek = 8590,
	TLogCommitReply = 8580,
	TLogCommit = 8570,
	ProxyGetRawCommittedVersion = 8565,
	ProxyMasterVersionReply = 8560,
	ProxyCommitYield2 = 8557,
	ProxyTLogCommitReply = 8555,
	ProxyCommitYield1 = 8550,
	ProxyResolverReply = 8547,
	ProxyCommit = 8545,
	ProxyCommitBatcher = 8540,
	TLogConfirmRunningReply = 8530,
	TLogConfirmRunning = 8520,
	ProxyGRVTimer = 8510,
	GetConsistentReadVersion = 8500,
	DefaultPromiseEndpoint = 8000,
	DefaultOnMainThread = 7500,
	DefaultDelay = 7010,
	DefaultYield = 7000,
	DiskRead = 5010,
	DefaultEndpoint = 5000,
	UnknownEndpoint = 4000,
	MoveKeys = 3550,
	DataDistributionLaunch = 3530,
	Ratekeeper = 3510,
	DataDistribution = 3502,
	DataDistributionLow = 3501,
	DataDistributionVeryLow = 3500,
	DiskWrite = 3010,
	UpdateStorage = 3000,
	CompactCache = 2900,
	TLogSpilledPeekReply = 2800,
	FetchKeys = 2500,
	RestoreApplierWriteDB = 2310,
	RestoreApplierReceiveMutations = 2300,
	RestoreLoaderFinishVersionBatch = 2220,
	RestoreLoaderSendMutations = 2210,
	RestoreLoaderLoadFiles = 2200,
	LowPriorityRead = 2100,
	Low = 2000,

	Min = 1000,
	Zero = 0
};

// These have been given long, annoying names to discourage their use.

inline TaskPriority incrementPriority(TaskPriority p) {
	return static_cast<TaskPriority>(static_cast<uint64_t>(p) + 1);
}

inline TaskPriority decrementPriority(TaskPriority p) {
	return static_cast<TaskPriority>(static_cast<uint64_t>(p) - 1);
}

inline TaskPriority incrementPriorityIfEven(TaskPriority p) {
	return static_cast<TaskPriority>(static_cast<uint64_t>(p) | 1);
}

class Void;

struct IPAddress {
	typedef boost::asio::ip::address_v6::bytes_type IPAddressStore;
	static_assert(std::is_same<IPAddressStore, std::array<uint8_t, 16>>::value,
	              "IPAddressStore must be std::array<uint8_t, 16>");

public:
	// Represents both IPv4 and IPv6 address. For IPv4 addresses,
	// only the first 32bits are relevant and rest are initialized to
	// 0.
	IPAddress() : addr(uint32_t(0)) {}
	explicit IPAddress(const IPAddressStore& v6addr) : addr(v6addr) {}
	explicit IPAddress(uint32_t v4addr) : addr(v4addr) {}

	bool isV6() const { return std::holds_alternative<IPAddressStore>(addr); }
	bool isV4() const { return !isV6(); }
	bool isValid() const;

	// Returns raw v4/v6 representation of address. Caller is responsible
	// to call these functions safely.
	uint32_t toV4() const { return std::get<uint32_t>(addr); }
	const IPAddressStore& toV6() const { return std::get<IPAddressStore>(addr); }

	std::string toString() const;
	static Optional<IPAddress> parse(std::string str);

	bool operator==(const IPAddress& addr) const;
	bool operator!=(const IPAddress& addr) const;
	bool operator<(const IPAddress& addr) const;

	template <class Ar>
	void serialize(Ar& ar) {
		if constexpr (is_fb_function<Ar>) {
			serializer(ar, addr);
		} else {
			if (Ar::isDeserializing) {
				bool v6;
				serializer(ar, v6);
				if (v6) {
					IPAddressStore store;
					serializer(ar, store);
					addr = store;
				} else {
					uint32_t res;
					serializer(ar, res);
					addr = res;
				}
			} else {
				bool v6 = isV6();
				serializer(ar, v6);
				if (v6) {
					auto res = toV6();
					serializer(ar, res);
				} else {
					auto res = toV4();
					serializer(ar, res);
				}
			}
		}
	}

private:
	std::variant<uint32_t, IPAddressStore> addr;
};

template <>
struct Traceable<IPAddress> : std::true_type {
	static std::string toString(const IPAddress& value) { return value.toString(); }
};

struct NetworkAddress {
	constexpr static FileIdentifier file_identifier = 14155727;
	// A NetworkAddress identifies a particular running server (i.e. a TCP endpoint).
	IPAddress ip;
	uint16_t port;
	uint16_t flags;

	enum { FLAG_PRIVATE = 1, FLAG_TLS = 2 };

	NetworkAddress() : ip(IPAddress(0)), port(0), flags(FLAG_PRIVATE) {}
	NetworkAddress(const IPAddress& address, uint16_t port, bool isPublic, bool isTLS)
	  : ip(address), port(port), flags((isPublic ? 0 : FLAG_PRIVATE) | (isTLS ? FLAG_TLS : 0)) {}
	NetworkAddress(uint32_t ip, uint16_t port, bool isPublic, bool isTLS)
	  : NetworkAddress(IPAddress(ip), port, isPublic, isTLS) {}

	NetworkAddress(uint32_t ip, uint16_t port) : NetworkAddress(ip, port, false, false) {}
	NetworkAddress(const IPAddress& ip, uint16_t port) : NetworkAddress(ip, port, false, false) {}

	bool operator==(NetworkAddress const& r) const { return ip == r.ip && port == r.port && flags == r.flags; }
	bool operator!=(NetworkAddress const& r) const { return ip != r.ip || port != r.port || flags != r.flags; }
	bool operator<(NetworkAddress const& r) const {
		if (flags != r.flags)
			return flags < r.flags;
		else if (ip != r.ip)
			return ip < r.ip;
		return port < r.port;
	}

	bool isValid() const { return ip.isValid() || port != 0; }
	bool isPublic() const { return !(flags & FLAG_PRIVATE); }
	bool isTLS() const { return (flags & FLAG_TLS) != 0; }
	bool isV6() const { return ip.isV6(); }

	size_t hash() const {
		size_t result = 0;
		if (ip.isV6()) {
			uint16_t* ptr = (uint16_t*)ip.toV6().data();
			result = ((size_t)ptr[5] << 32) | ((size_t)ptr[6] << 16) | ptr[7];
		} else {
			result = ip.toV4();
		}
		return (result << 16) + port;
	}

	static NetworkAddress parse(std::string const&); // May throw connection_string_invalid
	static Optional<NetworkAddress> parseOptional(std::string const&);
	static std::vector<NetworkAddress> parseList(std::string const&);
	std::string toString() const;

	template <class Ar>
	void serialize(Ar& ar) {
		if constexpr (is_fb_function<Ar>) {
			serializer(ar, ip, port, flags);
		} else {
			if (ar.isDeserializing && !ar.protocolVersion().hasIPv6()) {
				uint32_t ipV4;
				serializer(ar, ipV4, port, flags);
				ip = IPAddress(ipV4);
			} else {
				serializer(ar, ip, port, flags);
			}
		}
	}
};

template <>
struct Traceable<NetworkAddress> : std::true_type {
	static std::string toString(const NetworkAddress& value) { return value.toString(); }
};

namespace std {
template <>
struct hash<NetworkAddress> {
	size_t operator()(const NetworkAddress& na) const { return na.hash(); }
};
} // namespace std

struct NetworkAddressList {
	NetworkAddress address;
	Optional<NetworkAddress> secondaryAddress;

	bool operator==(NetworkAddressList const& r) const {
		return address == r.address && secondaryAddress == r.secondaryAddress;
	}
	bool operator!=(NetworkAddressList const& r) const {
		return address != r.address || secondaryAddress != r.secondaryAddress;
	}
	bool operator<(NetworkAddressList const& r) const {
		if (address != r.address)
			return address < r.address;
		return secondaryAddress < r.secondaryAddress;
	}

	NetworkAddress getTLSAddress() const {
		if (!secondaryAddress.present() || address.isTLS()) {
			return address;
		}
		return secondaryAddress.get();
	}

	std::string toString() const {
		if (!secondaryAddress.present()) {
			return address.toString();
		}
		return address.toString() + ", " + secondaryAddress.get().toString();
	}

	template <class Ar>
	void serialize(Ar& ar) {
		serializer(ar, address, secondaryAddress);
	}
};

std::string toIPVectorString(std::vector<uint32_t> ips);
std::string toIPVectorString(const std::vector<IPAddress>& ips);
std::string formatIpPort(const IPAddress& ip, uint16_t port);

template <class T>
class Future;
template <class T>
class Promise;

struct NetworkMetrics {
	enum { SLOW_EVENT_BINS = 16 };
	uint64_t countSlowEvents[SLOW_EVENT_BINS] = {};

	double secSquaredSubmit = 0;
	double secSquaredDiskStall = 0;

	struct PriorityStats {
		TaskPriority priority;

		bool active = false;
		double duration = 0;
		double timer = 0;
		double windowedTimer = 0;
		double maxDuration = 0;

		PriorityStats(TaskPriority priority) : priority(priority) {}
	};

	std::unordered_map<TaskPriority, struct PriorityStats> activeTrackers;
	double lastRunLoopBusyness;
	std::vector<struct PriorityStats> starvationTrackers;

	static const std::vector<int> starvationBins;

	NetworkMetrics() : lastRunLoopBusyness(0) {
		for (int priority : starvationBins) {
			starvationTrackers.emplace_back(static_cast<TaskPriority>(priority));
		}
	}
};

struct FlowLock;

struct NetworkInfo {
	NetworkMetrics metrics;
	double oldestAlternativesFailure = 0;
	double newestAlternativesFailure = 0;
	double lastAlternativesFailureSkipDelay = 0;

	std::map<std::pair<IPAddress, uint16_t>, std::pair<int, double>> serverTLSConnectionThrottler;
	FlowLock* handshakeLock;

	NetworkInfo();
};

class IEventFD : public ReferenceCounted<IEventFD> {
public:
	virtual ~IEventFD() {}
	virtual int getFD() = 0;
	virtual Future<int64_t> read() = 0;
};

// forward declare SendBuffer, declared in serialize.h
struct SendBuffer;

class IConnection {
public:
	// IConnection is reference-counted (use Reference<IConnection>), but the caller must explicitly call close()
	virtual void addref() = 0;
	virtual void delref() = 0;

	// Closes the underlying connection eventually if it is not already closed.
	virtual void close() = 0;

	virtual Future<Void> acceptHandshake() = 0;

	virtual Future<Void> connectHandshake() = 0;

	// Precondition: write() has been called and last returned 0
	// returns when write() can write at least one byte (or may throw an error if the connection dies)
	virtual Future<Void> onWritable() = 0;

	// Precondition: read() has been called and last returned 0
	// returns when read() can read at least one byte (or may throw an error if the connection dies)
	virtual Future<Void> onReadable() = 0;

	// Reads as many bytes as possible from the read buffer into [begin,end) and returns the number of bytes read (might
	// be 0) (or may throw an error if the connection dies)
	virtual int read(uint8_t* begin, uint8_t* end) = 0;

	// Writes as many bytes as possible from the given SendBuffer chain into the write buffer and returns the number of
	// bytes written (might be 0) (or may throw an error if the connection dies) The SendBuffer chain cannot be empty,
	// and the limit must be positive. Important non-obvious behavior:  The caller is committing to write the contents
	// of the buffer chain up to the limit.  If all of those bytes could not be sent in this call to write() then
	// further calls must be made to write the remainder.  An IConnection implementation can make decisions based on the
	// entire byte set that the caller was attempting to write even if it is unable to write all of it immediately. Due
	// to limitations of TLSConnection, callers must also avoid reallocations that reduce the amount of written data in
	// the first buffer in the chain.
	virtual int write(SendBuffer const* buffer, int limit = std::numeric_limits<int>::max()) = 0;

	// Returns the network address and port of the other end of the connection.  In the case of an incoming connection,
	// this may not be an address we can connect to!
	virtual NetworkAddress getPeerAddress() = 0;

	virtual UID getDebugID() = 0;
};

class IListener {
public:
	virtual void addref() = 0;
	virtual void delref() = 0;

	// Returns one incoming connection when it is available.  Do not cancel unless you are done with the listener!
	virtual Future<Reference<IConnection>> accept() = 0;

	virtual NetworkAddress getListenAddress() = 0;
};

typedef void* flowGlobalType;
typedef NetworkAddress (*NetworkAddressFuncPtr)();
typedef NetworkAddressList (*NetworkAddressesFuncPtr)();

class TLSConfig;
class INetwork;
extern INetwork* g_network;
extern INetwork* newNet2(const TLSConfig& tlsConfig, bool useThreadPool = false, bool useMetrics = false);

class INetwork {
public:
	// This interface abstracts the physical or simulated network, event loop and hardware that FoundationDB is running
	// on. Note that there are tools for disk access, scheduling, etc as well as networking, and that almost all access
	//   to the network should be through FlowTransport, not directly through these low level interfaces!

	enum enumGlobal {
		enFailureMonitor = 0,
		enFlowTransport = 1,
		enTDMetrics = 2,
		enNetworkConnections = 3,
		enNetworkAddressFunc = 4,
		enFileSystem = 5,
		enASIOService = 6,
		enEventFD = 7,
		enRunCycleFunc = 8,
		enASIOTimedOut = 9,
		enBlobCredentialFiles = 10,
		enNetworkAddressesFunc = 11,
		enClientFailureMonitor = 12,
		enSQLiteInjectedError = 13
	};

	virtual void longTaskCheck(const char* name) {}

	virtual double now() = 0;
	// Provides a clock that advances at a similar rate on all connected endpoints
	// FIXME: Return a fixed point Time class

	virtual double timer() = 0;
	// A wrapper for directly getting the system time. The time returned by now() only updates in the run loop,
	// so it cannot be used to measure times of functions that do not have wait statements.

	virtual double timer_monotonic() = 0;
	// Similar to timer, but monotonic

	virtual Future<class Void> delay(double seconds, TaskPriority taskID) = 0;
	// The given future will be set after seconds have elapsed

	virtual Future<class Void> yield(TaskPriority taskID) = 0;
	// The given future will be set immediately or after higher-priority tasks have executed

	virtual bool check_yield(TaskPriority taskID) = 0;
	// Returns true if a call to yield would result in a delay

	virtual TaskPriority getCurrentTask() = 0;
	// Gets the taskID/priority of the current task

	virtual void setCurrentTask(TaskPriority taskID) = 0;
	// Sets the taskID/priority of the current task, without yielding

	virtual flowGlobalType global(int id) = 0;
	virtual void setGlobal(size_t id, flowGlobalType v) = 0;

	virtual void stop() = 0;
	// Terminate the program

	virtual void addStopCallback(std::function<void()> fn) = 0;
	// Calls `fn` when stop() is called.
	// addStopCallback can be called more than once, and each added `fn` will be run once.

	virtual bool isSimulated() const = 0;
	// Returns true if this network is a local simulation

	virtual bool isOnMainThread() const = 0;
	// Returns true if the current thread is the main thread

	virtual void onMainThread(Promise<Void>&& signal, TaskPriority taskID) = 0;
	// Executes signal.send(Void()) on a/the thread belonging to this network

	virtual THREAD_HANDLE startThread(THREAD_FUNC_RETURN (*func)(void*), void* arg) = 0;
	// Starts a thread and returns a handle to it

	virtual void run() = 0;
	// Devotes this thread to running the network (generally until stop())

	virtual void initMetrics() {}
	// Metrics must be initialized after FlowTransport::createInstance has been called

	// TLS must be initialized before using the network
	enum ETLSInitState { NONE = 0, CONFIG = 1, CONNECT = 2, LISTEN = 3 };
	virtual void initTLS(ETLSInitState targetState = CONFIG) {}

	virtual const TLSConfig& getTLSConfig() = 0;
	// Return the TLS Configuration

	virtual void getDiskBytes(std::string const& directory, int64_t& free, int64_t& total) = 0;
	// Gets the number of free and total bytes available on the disk which contains directory

	virtual bool isAddressOnThisHost(NetworkAddress const& addr) = 0;
	// Returns true if it is reasonably certain that a connection to the given address would be a fast loopback
	// connection

	// If the network has not been run and this function has not been previously called, returns true. Otherwise,
	// returns false.
	virtual bool checkRunnable() = 0;

	// Shorthand for transport().getLocalAddress()
	static NetworkAddress getLocalAddress() {
		flowGlobalType netAddressFuncPtr =
		    reinterpret_cast<flowGlobalType>(g_network->global(INetwork::enNetworkAddressFunc));
		return (netAddressFuncPtr) ? reinterpret_cast<NetworkAddressFuncPtr>(netAddressFuncPtr)() : NetworkAddress();
	}

	// Shorthand for transport().getLocalAddresses()
	static NetworkAddressList getLocalAddresses() {
		flowGlobalType netAddressesFuncPtr =
		    reinterpret_cast<flowGlobalType>(g_network->global(INetwork::enNetworkAddressesFunc));
		return (netAddressesFuncPtr) ? reinterpret_cast<NetworkAddressesFuncPtr>(netAddressesFuncPtr)()
		                             : NetworkAddressList();
	}

	NetworkInfo networkInfo;

protected:
	INetwork() {}

	~INetwork() {} // Please don't try to delete through this interface!
};

class INetworkConnections {
public:
	// Methods for making and accepting network connections.  Logically this is part of the INetwork abstraction
	// that abstracts all interaction with the physical world; it is separated out to make it easy for e.g. transport
	// security to override only these operations without having to delegate everything in INetwork.

	// Make an outgoing connection to the given address.  May return an error or block indefinitely in case of
	// connection problems!
	virtual Future<Reference<IConnection>> connect(NetworkAddress toAddr, std::string host = "") = 0;

	// Resolve host name and service name (such as "http" or can be a plain number like "80") to a list of 1 or more
	// NetworkAddresses
	virtual Future<std::vector<NetworkAddress>> resolveTCPEndpoint(std::string host, std::string service) = 0;

	// Convenience function to resolve host/service and connect to one of its NetworkAddresses randomly
	// useTLS has to be a parameter here because it is passed to connect() as part of the toAddr object.
	virtual Future<Reference<IConnection>> connect(std::string host, std::string service, bool useTLS = false);

	// Listen for connections on the given local address
	virtual Reference<IListener> listen(NetworkAddress localAddr) = 0;

	static INetworkConnections* net() {
		return static_cast<INetworkConnections*>((void*)g_network->global(INetwork::enNetworkConnections));
	}
	// Returns the interface that should be used to make and accept socket connections
};

#endif