/* * MasterProxyServer.actor.cpp * * This source file is part of the FoundationDB open source project * * Copyright 2013-2018 Apple Inc. and the FoundationDB project authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdbclient/Atomic.h" #include "fdbclient/DatabaseConfiguration.h" #include "fdbclient/FDBTypes.h" #include "fdbclient/KeyRangeMap.h" #include "fdbclient/Knobs.h" #include "fdbclient/MasterProxyInterface.h" #include "fdbclient/NativeAPI.actor.h" #include "fdbclient/Notified.h" #include "fdbclient/SystemData.h" #include "fdbrpc/sim_validation.h" #include "fdbserver/ApplyMetadataMutation.h" #include "fdbserver/ConflictSet.h" #include "fdbserver/DataDistributorInterface.h" #include "fdbserver/FDBExecHelper.actor.h" #include "fdbserver/IKeyValueStore.h" #include "fdbserver/Knobs.h" #include "fdbserver/LatencyBandConfig.h" #include "fdbserver/LogSystem.h" #include "fdbserver/LogSystemDiskQueueAdapter.h" #include "fdbserver/MasterInterface.h" #include "fdbserver/RecoveryState.h" #include "fdbserver/ServerDBInfo.h" #include "fdbserver/WaitFailure.h" #include "fdbserver/WorkerInterface.actor.h" #include "flow/ActorCollection.h" #include "flow/Knobs.h" #include "flow/Stats.h" #include "flow/TDMetric.actor.h" #include "flow/actorcompiler.h" // This must be the last #include. struct ProxyStats { CounterCollection cc; Counter txnStartIn, txnStartOut, txnStartBatch; Counter txnSystemPriorityStartIn, txnSystemPriorityStartOut; Counter txnBatchPriorityStartIn, txnBatchPriorityStartOut; Counter txnDefaultPriorityStartIn, txnDefaultPriorityStartOut; Counter txnCommitIn, txnCommitVersionAssigned, txnCommitResolving, txnCommitResolved, txnCommitOut, txnCommitOutSuccess; Counter txnConflicts; Counter commitBatchIn, commitBatchOut; Counter mutationBytes; Counter mutations; Counter conflictRanges; Counter keyServerLocationRequests; Version lastCommitVersionAssigned; LatencyBands commitLatencyBands; LatencyBands grvLatencyBands; Future logger; explicit ProxyStats(UID id, Version* pVersion, NotifiedVersion* pCommittedVersion, int64_t *commitBatchesMemBytesCountPtr) : cc("ProxyStats", id.toString()), txnStartIn("TxnStartIn", cc), txnStartOut("TxnStartOut", cc), txnStartBatch("TxnStartBatch", cc), txnSystemPriorityStartIn("TxnSystemPriorityStartIn", cc), txnSystemPriorityStartOut("TxnSystemPriorityStartOut", cc), txnBatchPriorityStartIn("TxnBatchPriorityStartIn", cc), txnBatchPriorityStartOut("TxnBatchPriorityStartOut", cc), txnDefaultPriorityStartIn("TxnDefaultPriorityStartIn", cc), txnDefaultPriorityStartOut("TxnDefaultPriorityStartOut", cc), txnCommitIn("TxnCommitIn", cc), txnCommitVersionAssigned("TxnCommitVersionAssigned", cc), txnCommitResolving("TxnCommitResolving", cc), txnCommitResolved("TxnCommitResolved", cc), txnCommitOut("TxnCommitOut", cc), txnCommitOutSuccess("TxnCommitOutSuccess", cc), txnConflicts("TxnConflicts", cc), commitBatchIn("CommitBatchIn", cc), commitBatchOut("CommitBatchOut", cc), mutationBytes("MutationBytes", cc), mutations("Mutations", cc), conflictRanges("ConflictRanges", cc), keyServerLocationRequests("KeyServerLocationRequests", cc), lastCommitVersionAssigned(0), commitLatencyBands("CommitLatencyMetrics", id, SERVER_KNOBS->STORAGE_LOGGING_DELAY), grvLatencyBands("GRVLatencyMetrics", id, SERVER_KNOBS->STORAGE_LOGGING_DELAY) { specialCounter(cc, "LastAssignedCommitVersion", [this](){return this->lastCommitVersionAssigned;}); specialCounter(cc, "Version", [pVersion](){return *pVersion; }); specialCounter(cc, "CommittedVersion", [pCommittedVersion](){ return pCommittedVersion->get(); }); specialCounter(cc, "CommitBatchesMemBytesCount", [commitBatchesMemBytesCountPtr]() { return *commitBatchesMemBytesCountPtr; }); logger = traceCounters("ProxyMetrics", id, SERVER_KNOBS->WORKER_LOGGING_INTERVAL, &cc, "ProxyMetrics"); } }; ACTOR Future getRate(UID myID, Reference> db, int64_t* inTransactionCount, int64_t* inBatchTransactionCount, double* outTransactionRate, double* outBatchTransactionRate, GetHealthMetricsReply* healthMetricsReply, GetHealthMetricsReply* detailedHealthMetricsReply) { state Future nextRequestTimer = Never(); state Future leaseTimeout = Never(); state Future reply = Never(); state double lastDetailedReply = 0.0; // request detailed metrics immediately state bool expectingDetailedReply = false; state int64_t lastTC = 0; if (db->get().ratekeeper.present()) nextRequestTimer = Void(); loop choose { when ( wait( db->onChange() ) ) { if ( db->get().ratekeeper.present() ) { TraceEvent("ProxyRatekeeperChanged", myID) .detail("RKID", db->get().ratekeeper.get().id()); nextRequestTimer = Void(); // trigger GetRate request } else { TraceEvent("ProxyRatekeeperDied", myID); nextRequestTimer = Never(); reply = Never(); } } when ( wait( nextRequestTimer ) ) { nextRequestTimer = Never(); bool detailed = now() - lastDetailedReply > SERVER_KNOBS->DETAILED_METRIC_UPDATE_RATE; reply = brokenPromiseToNever(db->get().ratekeeper.get().getRateInfo.getReply(GetRateInfoRequest(myID, *inTransactionCount, *inBatchTransactionCount, detailed))); expectingDetailedReply = detailed; } when ( GetRateInfoReply rep = wait(reply) ) { reply = Never(); *outTransactionRate = rep.transactionRate; *outBatchTransactionRate = rep.batchTransactionRate; //TraceEvent("MasterProxyRate", myID).detail("Rate", rep.transactionRate).detail("BatchRate", rep.batchTransactionRate).detail("Lease", rep.leaseDuration).detail("ReleasedTransactions", *inTransactionCount - lastTC); lastTC = *inTransactionCount; leaseTimeout = delay(rep.leaseDuration); nextRequestTimer = delayJittered(rep.leaseDuration / 2); healthMetricsReply->update(rep.healthMetrics, expectingDetailedReply, true); if (expectingDetailedReply) { detailedHealthMetricsReply->update(rep.healthMetrics, true, true); lastDetailedReply = now(); } } when ( wait( leaseTimeout ) ) { *outTransactionRate = 0; *outBatchTransactionRate = 0; //TraceEvent("MasterProxyRate", myID).detail("Rate", 0).detail("BatchRate", 0).detail("Lease", "Expired"); leaseTimeout = Never(); } } } ACTOR Future queueTransactionStartRequests( std::priority_queue< std::pair, std::vector< std::pair > > *transactionQueue, FutureStream readVersionRequests, PromiseStream GRVTimer, double *lastGRVTime, double *GRVBatchTime, FutureStream replyTimes, ProxyStats* stats) { state int64_t counter = 0; loop choose{ when(GetReadVersionRequest req = waitNext(readVersionRequests)) { if (req.debugID.present()) g_traceBatch.addEvent("TransactionDebug", req.debugID.get().first(), "MasterProxyServer.queueTransactionStartRequests.Before"); stats->txnStartIn += req.transactionCount; if (req.priority() >= GetReadVersionRequest::PRIORITY_SYSTEM_IMMEDIATE) stats->txnSystemPriorityStartIn += req.transactionCount; else if (req.priority() >= GetReadVersionRequest::PRIORITY_DEFAULT) stats->txnDefaultPriorityStartIn += req.transactionCount; else stats->txnBatchPriorityStartIn += req.transactionCount; if (transactionQueue->empty()) { if (now() - *lastGRVTime > *GRVBatchTime) *lastGRVTime = now() - *GRVBatchTime; forwardPromise(GRVTimer, delayJittered(*GRVBatchTime - (now() - *lastGRVTime), TaskPriority::ProxyGRVTimer)); } transactionQueue->push(std::make_pair(req, counter--)); } // dynamic batching monitors reply latencies when(double reply_latency = waitNext(replyTimes)) { double target_latency = reply_latency * SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_LATENCY_FRACTION; *GRVBatchTime = std::max(SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_MIN, std::min(SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_MAX, target_latency * SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA + *GRVBatchTime * (1-SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA))); } } } ACTOR void discardCommit(UID id, Future fcm, Future dummyCommitState) { ASSERT(!dummyCommitState.isReady()); LogSystemDiskQueueAdapter::CommitMessage cm = wait(fcm); TraceEvent("Discarding", id).detail("Count", cm.messages.size()); cm.acknowledge.send(Void()); ASSERT(dummyCommitState.isReady()); } DESCR struct SingleKeyMutation { Standalone shardBegin; Standalone shardEnd; int64_t tag1; int64_t tag2; int64_t tag3; }; struct ProxyCommitData { UID dbgid; int64_t commitBatchesMemBytesCount; ProxyStats stats; MasterInterface master; vector resolvers; LogSystemDiskQueueAdapter* logAdapter; Reference logSystem; IKeyValueStore* txnStateStore; NotifiedVersion committedVersion; // Provided that this recovery has succeeded or will succeed, this version is fully committed (durable) Version minKnownCommittedVersion; // No version smaller than this one will be used as the known committed version during recovery Version version; // The version at which txnStateStore is up to date Promise validState; // Set once txnStateStore and version are valid double lastVersionTime; KeyRangeMap> vecBackupKeys; uint64_t commitVersionRequestNumber; uint64_t mostRecentProcessedRequestNumber; KeyRangeMap>> keyResolvers; KeyRangeMap keyInfo; std::map uid_applyMutationsData; bool firstProxy; double lastCoalesceTime; bool locked; Optional metadataVersion; double commitBatchInterval; int64_t localCommitBatchesStarted; NotifiedVersion latestLocalCommitBatchResolving; NotifiedVersion latestLocalCommitBatchLogging; PromiseStream commitBatchStartNotifications; PromiseStream> commitBatchVersions; // 1:1 with commitBatchStartNotifications RequestStream getConsistentReadVersion; RequestStream commit; Database cx; Reference> db; EventMetricHandle singleKeyMutationEvent; std::map> storageCache; std::map tag_popped; Deque> txsPopVersions; Version lastTxsPop; bool popRemoteTxs; vector> whitelistedBinPathVec; Optional latencyBandConfig; double lastStartCommit; double lastCommitLatency; NotifiedDouble lastCommitTime; //The tag related to a storage server rarely change, so we keep a vector of tags for each key range to be slightly more CPU efficient. //When a tag related to a storage server does change, we empty out all of these vectors to signify they must be repopulated. //We do not repopulate them immediately to avoid a slow task. const vector& tagsForKey(StringRef key) { auto& tags = keyInfo[key].tags; if(!tags.size()) { auto& r = keyInfo.rangeContaining(key).value(); for(auto info : r.src_info) { r.tags.push_back(info->tag); } for(auto info : r.dest_info) { r.tags.push_back(info->tag); } uniquify(r.tags); return r.tags; } return tags; } ProxyCommitData(UID dbgid, MasterInterface master, RequestStream getConsistentReadVersion, Version recoveryTransactionVersion, RequestStream commit, Reference> db, bool firstProxy) : dbgid(dbgid), stats(dbgid, &version, &committedVersion, &commitBatchesMemBytesCount), master(master), logAdapter(NULL), txnStateStore(NULL), popRemoteTxs(false), committedVersion(recoveryTransactionVersion), version(0), minKnownCommittedVersion(0), lastVersionTime(0), commitVersionRequestNumber(1), mostRecentProcessedRequestNumber(0), getConsistentReadVersion(getConsistentReadVersion), commit(commit), lastCoalesceTime(0), localCommitBatchesStarted(0), locked(false), commitBatchInterval(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_MIN), firstProxy(firstProxy), cx(openDBOnServer(db, TaskPriority::DefaultEndpoint, true, true)), db(db), singleKeyMutationEvent(LiteralStringRef("SingleKeyMutation")), commitBatchesMemBytesCount(0), lastTxsPop(0), lastStartCommit(0), lastCommitLatency(SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION), lastCommitTime(0) {} }; struct ResolutionRequestBuilder { ProxyCommitData* self; vector requests; vector> transactionResolverMap; vector outTr; ResolutionRequestBuilder( ProxyCommitData* self, Version version, Version prevVersion, Version lastReceivedVersion) : self(self), requests(self->resolvers.size()) { for(auto& req : requests) { req.prevVersion = prevVersion; req.version = version; req.lastReceivedVersion = lastReceivedVersion; } } CommitTransactionRef& getOutTransaction(int resolver, Version read_snapshot) { CommitTransactionRef *& out = outTr[resolver]; if (!out) { ResolveTransactionBatchRequest& request = requests[resolver]; request.transactions.resize(request.arena, request.transactions.size() + 1); out = &request.transactions.back(); out->read_snapshot = read_snapshot; } return *out; } void addTransaction(CommitTransactionRef& trIn, int transactionNumberInBatch) { // SOMEDAY: There are a couple of unnecessary O( # resolvers ) steps here outTr.assign(requests.size(), NULL); ASSERT( transactionNumberInBatch >= 0 && transactionNumberInBatch < 32768 ); bool isTXNStateTransaction = false; for (auto & m : trIn.mutations) { if (m.type == MutationRef::SetVersionstampedKey) { transformVersionstampMutation( m, &MutationRef::param1, requests[0].version, transactionNumberInBatch ); trIn.write_conflict_ranges.push_back( requests[0].arena, singleKeyRange( m.param1, requests[0].arena ) ); } else if (m.type == MutationRef::SetVersionstampedValue) { transformVersionstampMutation( m, &MutationRef::param2, requests[0].version, transactionNumberInBatch ); } if (isMetadataMutation(m)) { isTXNStateTransaction = true; getOutTransaction(0, trIn.read_snapshot).mutations.push_back(requests[0].arena, m); } } for(auto& r : trIn.read_conflict_ranges) { auto ranges = self->keyResolvers.intersectingRanges( r ); std::set resolvers; for(auto &ir : ranges) { auto& version_resolver = ir.value(); for(int i = version_resolver.size()-1; i >= 0; i--) { resolvers.insert(version_resolver[i].second); if( version_resolver[i].first < trIn.read_snapshot ) break; } } ASSERT(resolvers.size()); for(int resolver : resolvers) getOutTransaction( resolver, trIn.read_snapshot ).read_conflict_ranges.push_back( requests[resolver].arena, r ); } for(auto& r : trIn.write_conflict_ranges) { auto ranges = self->keyResolvers.intersectingRanges( r ); std::set resolvers; for(auto &ir : ranges) resolvers.insert(ir.value().back().second); ASSERT(resolvers.size()); for(int resolver : resolvers) getOutTransaction( resolver, trIn.read_snapshot ).write_conflict_ranges.push_back( requests[resolver].arena, r ); } if (isTXNStateTransaction) for (int r = 0; r resolversUsed; for (int r = 0; r commitBatcher(ProxyCommitData *commitData, PromiseStream, int> > out, FutureStream in, int desiredBytes, int64_t memBytesLimit) { wait(delayJittered(commitData->commitBatchInterval, TaskPriority::ProxyCommitBatcher)); state double lastBatch = 0; loop{ state Future timeout; state std::vector batch; state int batchBytes = 0; if(SERVER_KNOBS->MAX_COMMIT_BATCH_INTERVAL <= 0) { timeout = Never(); } else { timeout = delayJittered(SERVER_KNOBS->MAX_COMMIT_BATCH_INTERVAL, TaskPriority::ProxyCommitBatcher); } while(!timeout.isReady() && !(batch.size() == SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_COUNT_MAX || batchBytes >= desiredBytes)) { choose{ when(CommitTransactionRequest req = waitNext(in)) { int bytes = getBytes(req); // Drop requests if memory is under severe pressure if(commitData->commitBatchesMemBytesCount + bytes > memBytesLimit) { req.reply.sendError(proxy_memory_limit_exceeded()); TraceEvent(SevWarnAlways, "ProxyCommitBatchMemoryThresholdExceeded").suppressFor(60).detail("MemBytesCount", commitData->commitBatchesMemBytesCount).detail("MemLimit", memBytesLimit); continue; } if (bytes > FLOW_KNOBS->PACKET_WARNING) { TraceEvent(!g_network->isSimulated() ? SevWarnAlways : SevWarn, "LargeTransaction") .suppressFor(1.0) .detail("Size", bytes) .detail("Client", req.reply.getEndpoint().getPrimaryAddress()); } ++commitData->stats.txnCommitIn; if(req.debugID.present()) { g_traceBatch.addEvent("CommitDebug", req.debugID.get().first(), "MasterProxyServer.batcher"); } if(!batch.size()) { commitData->commitBatchStartNotifications.send(Void()); if(now() - lastBatch > commitData->commitBatchInterval) { timeout = delayJittered(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_FROM_IDLE, TaskPriority::ProxyCommitBatcher); } else { timeout = delayJittered(commitData->commitBatchInterval - (now() - lastBatch), TaskPriority::ProxyCommitBatcher); } } if((batchBytes + bytes > CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT || req.firstInBatch()) && batch.size()) { out.send({ batch, batchBytes }); lastBatch = now(); commitData->commitBatchStartNotifications.send(Void()); timeout = delayJittered(commitData->commitBatchInterval, TaskPriority::ProxyCommitBatcher); batch = std::vector(); batchBytes = 0; } batch.push_back(req); batchBytes += bytes; commitData->commitBatchesMemBytesCount += bytes; } when(wait(timeout)) {} } } out.send({ std::move(batch), batchBytes }); lastBatch = now(); } } void createWhitelistBinPathVec(const std::string& binPath, vector>& binPathVec) { TraceEvent(SevDebug, "BinPathConverter").detail("Input", binPath); StringRef input(binPath); while (input != StringRef()) { StringRef token = input.eat(LiteralStringRef(",")); if (token != StringRef()) { const uint8_t* ptr = token.begin(); while (ptr != token.end() && *ptr == ' ') { ptr++; } if (ptr != token.end()) { Standalone newElement(token.substr(ptr - token.begin())); TraceEvent(SevDebug, "BinPathItem").detail("Element", newElement); binPathVec.push_back(newElement); } } } return; } bool isWhitelisted(const vector>& binPathVec, StringRef binPath) { TraceEvent("BinPath").detail("Value", binPath); for (const auto& item : binPathVec) { TraceEvent("Element").detail("Value", item); } return std::find(binPathVec.begin(), binPathVec.end(), binPath) != binPathVec.end(); } ACTOR Future commitBatch( ProxyCommitData* self, vector trs, int currentBatchMemBytesCount) { state int64_t localBatchNumber = ++self->localCommitBatchesStarted; state LogPushData toCommit(self->logSystem); state double t1 = now(); state Optional debugID; state bool forceRecovery = false; ASSERT(SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS <= SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT); // since we are using just the former to limit the number of versions actually in flight! // Active load balancing runs at a very high priority (to obtain accurate estimate of memory used by commit batches) so we need to downgrade here wait(delay(0, TaskPriority::ProxyCommit)); self->lastVersionTime = t1; ++self->stats.commitBatchIn; for (int t = 0; trandomUniqueID(); g_traceBatch.addAttach("CommitAttachID", trs[t].debugID.get().first(), debugID.get().first()); } } if(localBatchNumber == 2 && !debugID.present() && self->firstProxy && !g_network->isSimulated()) { debugID = deterministicRandom()->randomUniqueID(); TraceEvent("SecondCommitBatch", self->dbgid).detail("DebugID", debugID.get()); } if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.Before"); if (trs.empty()) { // We are sending an empty batch, so we have to trigger the version fetcher self->commitBatchStartNotifications.send(Void()); } /////// Phase 1: Pre-resolution processing (CPU bound except waiting for a version # which is separately pipelined and *should* be available by now (unless empty commit); ordered; currently atomic but could yield) TEST(self->latestLocalCommitBatchResolving.get() < localBatchNumber-1); // Queuing pre-resolution commit processing wait(self->latestLocalCommitBatchResolving.whenAtLeast(localBatchNumber-1)); wait(yield()); if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.GettingCommitVersion"); Future fVersionReply = waitNext(self->commitBatchVersions.getFuture()); GetCommitVersionReply versionReply = wait(fVersionReply); self->mostRecentProcessedRequestNumber = versionReply.requestNum; self->stats.txnCommitVersionAssigned += trs.size(); self->stats.lastCommitVersionAssigned = versionReply.version; state Version commitVersion = versionReply.version; state Version prevVersion = versionReply.prevVersion; for(auto it : versionReply.resolverChanges) { auto rs = self->keyResolvers.modify(it.range); for(auto r = rs.begin(); r != rs.end(); ++r) r->value().emplace_back(versionReply.resolverChangesVersion,it.dest); } //TraceEvent("ProxyGotVer", self->dbgid).detail("Commit", commitVersion).detail("Prev", prevVersion); if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.GotCommitVersion"); ResolutionRequestBuilder requests( self, commitVersion, prevVersion, self->version ); int conflictRangeCount = 0; state int64_t maxTransactionBytes = 0; for (int t = 0; tdbgid).detail("Snapshot", trs[t].transaction.read_snapshot); //for(auto& m : trs[t].transaction.mutations) maxTransactionBytes = std::max(maxTransactionBytes, trs[t].transaction.expectedSize()); // TraceEvent("MPTransactionsDump", self->dbgid).detail("Mutation", m.toString()); } self->stats.conflictRanges += conflictRangeCount; for (int r = 1; rresolvers.size(); r++) ASSERT(requests.requests[r].txnStateTransactions.size() == requests.requests[0].txnStateTransactions.size()); // Sending these requests is the fuzzy border between phase 1 and phase 2; it could conceivably overlap with resolution processing but is still using CPU self->stats.txnCommitResolving += trs.size(); vector< Future > replies; for (int r = 0; rresolvers.size(); r++) { requests.requests[r].debugID = debugID; replies.push_back(brokenPromiseToNever(self->resolvers[r].resolve.getReply(requests.requests[r], TaskPriority::ProxyResolverReply))); } state vector> transactionResolverMap = std::move( requests.transactionResolverMap ); ASSERT(self->latestLocalCommitBatchResolving.get() == localBatchNumber-1); self->latestLocalCommitBatchResolving.set(localBatchNumber); /////// Phase 2: Resolution (waiting on the network; pipelined) state vector resolution = wait( getAll(replies) ); if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.AfterResolution"); ////// Phase 3: Post-resolution processing (CPU bound except for very rare situations; ordered; currently atomic but doesn't need to be) TEST(self->latestLocalCommitBatchLogging.get() < localBatchNumber-1); // Queuing post-resolution commit processing wait(self->latestLocalCommitBatchLogging.whenAtLeast(localBatchNumber-1)); wait(yield()); self->stats.txnCommitResolved += trs.size(); if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.ProcessingMutations"); state Arena arena; state bool isMyFirstBatch = !self->version; state Optional oldCoordinators = self->txnStateStore->readValue(coordinatorsKey).get(); //TraceEvent("ResolutionResult", self->dbgid).detail("Sequence", sequence).detail("Version", commitVersion).detail("StateMutationProxies", resolution[0].stateMutations.size()).detail("WaitForResolution", now()-t1).detail("R0Committed", resolution[0].committed.size()) // .detail("Transactions", trs.size()); for(int r=1; r, Future> > storeCommits; for (int versionIndex = 0; versionIndex < resolution[0].stateMutations.size(); versionIndex++) { // self->logAdapter->setNextVersion( ??? ); << Ideally we would be telling the log adapter that the pushes in this commit will be in the version at which these state mutations were committed by another proxy, but at present we don't have that information here. So the disk queue may be unnecessarily conservative about popping. for (int transactionIndex = 0; transactionIndex < resolution[0].stateMutations[versionIndex].size() && !forceRecovery; transactionIndex++) { bool committed = true; for (int resolver = 0; resolver < resolution.size(); resolver++) committed = committed && resolution[resolver].stateMutations[versionIndex][transactionIndex].committed; if (committed) applyMetadataMutations( self->dbgid, arena, resolution[0].stateMutations[versionIndex][transactionIndex].mutations, self->txnStateStore, NULL, &forceRecovery, self->logSystem, 0, &self->vecBackupKeys, &self->keyInfo, self->firstProxy ? &self->uid_applyMutationsData : NULL, self->commit, self->cx, &self->committedVersion, &self->storageCache, &self->tag_popped); if( resolution[0].stateMutations[versionIndex][transactionIndex].mutations.size() && firstStateMutations ) { ASSERT(committed); firstStateMutations = false; forceRecovery = false; } //TraceEvent("MetadataTransaction", self->dbgid).detail("Committed", committed).detail("Mutations", resolution[0].stateMutations[versionIndex][transactionIndex].second.size()).detail("R1Mutations", resolution.back().stateMutations[versionIndex][transactionIndex].second.size()); } //TraceEvent("MetadataBatch", self->dbgid).detail("Transactions", resolution[0].stateMutations[versionIndex].size()); // These changes to txnStateStore will be committed by the other proxy, so we simply discard the commit message auto fcm = self->logAdapter->getCommitMessage(); storeCommits.emplace_back(fcm, self->txnStateStore->commit()); //discardCommit( dbgid, fcm, txnStateStore->commit() ); if (initialState) { //TraceEvent("ResyncLog", dbgid); initialState = false; forceRecovery = false; self->txnStateStore->resyncLog(); for (auto &p : storeCommits) { ASSERT(!p.second.isReady()); p.first.get().acknowledge.send(Void()); ASSERT(p.second.isReady()); } storeCommits.clear(); } } // Determine which transactions actually committed (conservatively) by combining results from the resolvers state vector committed(trs.size()); ASSERT(transactionResolverMap.size() == committed.size()); vector nextTr(resolution.size()); for (int t = 0; tlogAdapter->setNextVersion(commitVersion); state Optional lockedKey = self->txnStateStore->readValue(databaseLockedKey).get(); state bool locked = lockedKey.present() && lockedKey.get().size(); state Optional mustContainSystemKey = self->txnStateStore->readValue(mustContainSystemMutationsKey).get(); if(mustContainSystemKey.present() && mustContainSystemKey.get().size()) { for (int t = 0; t= nonMetadataSystemKeys.end) { foundSystem = true; break; } } if(!foundSystem) { committed[t] = ConflictBatch::TransactionConflict; } } } } if(forceRecovery) { wait( Future(Never()) ); } // This first pass through committed transactions deals with "metadata" effects (modifications of txnStateStore, changes to storage servers' responsibilities) int t; state int commitCount = 0; for (t = 0; t < trs.size() && !forceRecovery; t++) { if (committed[t] == ConflictBatch::TransactionCommitted && (!locked || trs[t].isLockAware())) { commitCount++; applyMetadataMutations(self->dbgid, arena, trs[t].transaction.mutations, self->txnStateStore, &toCommit, &forceRecovery, self->logSystem, commitVersion+1, &self->vecBackupKeys, &self->keyInfo, self->firstProxy ? &self->uid_applyMutationsData : NULL, self->commit, self->cx, &self->committedVersion, &self->storageCache, &self->tag_popped); } if(firstStateMutations) { ASSERT(committed[t] == ConflictBatch::TransactionCommitted); firstStateMutations = false; forceRecovery = false; } } if (forceRecovery) { for (; tdbgid).detail("Stage", "AwaitCommit"); } lockedKey = self->txnStateStore->readValue(databaseLockedKey).get(); state bool lockedAfter = lockedKey.present() && lockedKey.get().size(); state Optional metadataVersionAfter = self->txnStateStore->readValue(metadataVersionKey).get(); auto fcm = self->logAdapter->getCommitMessage(); storeCommits.emplace_back(fcm, self->txnStateStore->commit()); self->version = commitVersion; if (!self->validState.isSet()) self->validState.send(Void()); ASSERT(commitVersion); if (!isMyFirstBatch && self->txnStateStore->readValue( coordinatorsKey ).get().get() != oldCoordinators.get()) { wait( brokenPromiseToNever( self->master.changeCoordinators.getReply( ChangeCoordinatorsRequest( self->txnStateStore->readValue( coordinatorsKey ).get().get() ) ) ) ); ASSERT(false); // ChangeCoordinatorsRequest should always throw } // This second pass through committed transactions assigns the actual mutations to the appropriate storage servers' tags state int mutationCount = 0; state int mutationBytes = 0; state std::map logRangeMutations; state Arena logRangeMutationsArena; state uint32_t v = commitVersion / CLIENT_KNOBS->LOG_RANGE_BLOCK_SIZE; state int transactionNum = 0; state int yieldBytes = 0; for (; transactionNum* pMutations = &trs[transactionNum].transaction.mutations; for (; mutationNum < pMutations->size(); mutationNum++) { if(yieldBytes > SERVER_KNOBS->DESIRED_TOTAL_BYTES) { yieldBytes = 0; wait(yield()); } auto& m = (*pMutations)[mutationNum]; mutationCount++; mutationBytes += m.expectedSize(); yieldBytes += m.expectedSize(); // Determine the set of tags (responsible storage servers) for the mutation, splitting it // if necessary. Serialize (splits of) the mutation into the message buffer and add the tags. if (isSingleKeyMutation((MutationRef::Type) m.type)) { auto& tags = self->tagsForKey(m.param1); if(self->singleKeyMutationEvent->enabled) { KeyRangeRef shard = self->keyInfo.rangeContaining(m.param1).range(); self->singleKeyMutationEvent->tag1 = (int64_t)tags[0].id; self->singleKeyMutationEvent->tag2 = (int64_t)tags[1].id; self->singleKeyMutationEvent->tag3 = (int64_t)tags[2].id; self->singleKeyMutationEvent->shardBegin = shard.begin; self->singleKeyMutationEvent->shardEnd = shard.end; self->singleKeyMutationEvent->log(); } if (debugMutation("ProxyCommit", commitVersion, m)) TraceEvent("ProxyCommitTo", self->dbgid).detail("To", describe(tags)).detail("Mutation", m.toString()).detail("Version", commitVersion); toCommit.addTags(tags); toCommit.addTypedMessage(m); } else if (m.type == MutationRef::ClearRange) { auto ranges = self->keyInfo.intersectingRanges(KeyRangeRef(m.param1, m.param2)); auto firstRange = ranges.begin(); ++firstRange; if (firstRange == ranges.end()) { // Fast path if (debugMutation("ProxyCommit", commitVersion, m)) TraceEvent("ProxyCommitTo", self->dbgid).detail("To", describe(ranges.begin().value().tags)).detail("Mutation", m.toString()).detail("Version", commitVersion); ranges.begin().value().populateTags(); toCommit.addTags(ranges.begin().value().tags); } else { TEST(true); //A clear range extends past a shard boundary std::set allSources; for (auto r : ranges) { r.value().populateTags(); allSources.insert(r.value().tags.begin(), r.value().tags.end()); } if (debugMutation("ProxyCommit", commitVersion, m)) TraceEvent("ProxyCommitTo", self->dbgid).detail("To", describe(allSources)).detail("Mutation", m.toString()).detail("Version", commitVersion); toCommit.addTags(allSources); } toCommit.addTypedMessage(m); } else UNREACHABLE(); // Check on backing up key, if backup ranges are defined and a normal key if (self->vecBackupKeys.size() > 1 && (normalKeys.contains(m.param1) || m.param1 == metadataVersionKey)) { if (m.type != MutationRef::Type::ClearRange) { // Add the mutation to the relevant backup tag for (auto backupName : self->vecBackupKeys[m.param1]) { logRangeMutations[backupName].push_back_deep(logRangeMutationsArena, m); } } else { KeyRangeRef mutationRange(m.param1, m.param2); KeyRangeRef intersectionRange; // Identify and add the intersecting ranges of the mutation to the array of mutations to serialize for (auto backupRange : self->vecBackupKeys.intersectingRanges(mutationRange)) { // Get the backup sub range const auto& backupSubrange = backupRange.range(); // Determine the intersecting range intersectionRange = mutationRange & backupSubrange; // Create the custom mutation for the specific backup tag MutationRef backupMutation(MutationRef::Type::ClearRange, intersectionRange.begin, intersectionRange.end); // Add the mutation to the relevant backup tag for (auto backupName : backupRange.value()) { logRangeMutations[backupName].push_back_deep(logRangeMutationsArena, backupMutation); } } } } } } } // Serialize and backup the mutations as a single mutation if ((self->vecBackupKeys.size() > 1) && logRangeMutations.size()) { Key val; MutationRef backupMutation; uint32_t* partBuffer = NULL; // Serialize the log range mutations within the map for (auto& logRangeMutation : logRangeMutations) { BinaryWriter wr(Unversioned()); // Serialize the log destination wr.serializeBytes( logRangeMutation.first ); // Write the log keys and version information wr << (uint8_t)hashlittle(&v, sizeof(v), 0); wr << bigEndian64(commitVersion); backupMutation.type = MutationRef::SetValue; partBuffer = NULL; val = BinaryWriter::toValue(logRangeMutation.second, IncludeVersion()); for (int part = 0; part * CLIENT_KNOBS->MUTATION_BLOCK_SIZE < val.size(); part++) { // Assign the second parameter as the part backupMutation.param2 = val.substr(part * CLIENT_KNOBS->MUTATION_BLOCK_SIZE, std::min(val.size() - part * CLIENT_KNOBS->MUTATION_BLOCK_SIZE, CLIENT_KNOBS->MUTATION_BLOCK_SIZE)); // Write the last part of the mutation to the serialization, if the buffer is not defined if (!partBuffer) { // Serialize the part to the writer wr << bigEndian32(part); // Define the last buffer part partBuffer = (uint32_t*) ((char*) wr.getData() + wr.getLength() - sizeof(uint32_t)); } else { *partBuffer = bigEndian32(part); } // Define the mutation type and and location backupMutation.param1 = wr.toValue(); ASSERT( backupMutation.param1.startsWith(logRangeMutation.first) ); // We are writing into the configured destination auto& tags = self->tagsForKey(backupMutation.param1); toCommit.addTags(tags); toCommit.addTypedMessage(backupMutation); // if (debugMutation("BackupProxyCommit", commitVersion, backupMutation)) { // TraceEvent("BackupProxyCommitTo", self->dbgid).detail("To", describe(tags)).detail("BackupMutation", backupMutation.toString()) // .detail("BackupMutationSize", val.size()).detail("Version", commitVersion).detail("DestPath", logRangeMutation.first) // .detail("PartIndex", part).detail("PartIndexEndian", bigEndian32(part)).detail("PartData", backupMutation.param1); // } } } } self->stats.mutations += mutationCount; self->stats.mutationBytes += mutationBytes; // Storage servers mustn't make durable versions which are not fully committed (because then they are impossible to roll back) // We prevent this by limiting the number of versions which are semi-committed but not fully committed to be less than the MVCC window while (self->committedVersion.get() < commitVersion - SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS) { // This should be *extremely* rare in the real world, but knob buggification should make it happen in simulation TEST(true); // Semi-committed pipeline limited by MVCC window //TraceEvent("ProxyWaitingForCommitted", self->dbgid).detail("CommittedVersion", self->committedVersion.get()).detail("NeedToCommit", commitVersion); choose{ when(wait(self->committedVersion.whenAtLeast(commitVersion - SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS))) { wait(yield()); break; } when(GetReadVersionReply v = wait(self->getConsistentReadVersion.getReply(GetReadVersionRequest(0, GetReadVersionRequest::PRIORITY_SYSTEM_IMMEDIATE | GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY)))) { if(v.version > self->committedVersion.get()) { self->locked = v.locked; self->metadataVersion = v.metadataVersion; self->committedVersion.set(v.version); } if (self->committedVersion.get() < commitVersion - SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS) wait(delay(SERVER_KNOBS->PROXY_SPIN_DELAY)); } } } state LogSystemDiskQueueAdapter::CommitMessage msg = wait(storeCommits.back().first); // Should just be doing yields if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.AfterStoreCommits"); // txnState (transaction subsystem state) tag: message extracted from log adapter bool firstMessage = true; for(auto m : msg.messages) { if(firstMessage) { toCommit.addTxsTag(); } toCommit.addMessage(StringRef(m.begin(), m.size()), !firstMessage); firstMessage = false; } if ( prevVersion && commitVersion - prevVersion < SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT/2 ) debug_advanceMaxCommittedVersion( UID(), commitVersion ); //< Is this valid? //TraceEvent("ProxyPush", self->dbgid).detail("PrevVersion", prevVersion).detail("Version", commitVersion) // .detail("TransactionsSubmitted", trs.size()).detail("TransactionsCommitted", commitCount).detail("TxsPopTo", msg.popTo); if ( prevVersion && commitVersion - prevVersion < SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT/2 ) debug_advanceMaxCommittedVersion(UID(), commitVersion); state double commitStartTime = now(); self->lastStartCommit = commitStartTime; Future loggingComplete = self->logSystem->push( prevVersion, commitVersion, self->committedVersion.get(), self->minKnownCommittedVersion, toCommit, debugID ); if (!forceRecovery) { ASSERT(self->latestLocalCommitBatchLogging.get() == localBatchNumber-1); self->latestLocalCommitBatchLogging.set(localBatchNumber); } /////// Phase 4: Logging (network bound; pipelined up to MAX_READ_TRANSACTION_LIFE_VERSIONS (limited by loop above)) try { choose { when(Version ver = wait(loggingComplete)) { self->minKnownCommittedVersion = std::max(self->minKnownCommittedVersion, ver); } when(wait(self->committedVersion.whenAtLeast( commitVersion+1 ))) {} } } catch(Error &e) { if(e.code() == error_code_broken_promise) { throw master_tlog_failed(); } throw; } self->lastCommitLatency = now()-commitStartTime; self->lastCommitTime = std::max(self->lastCommitTime.get(), commitStartTime); wait(yield()); if( self->popRemoteTxs && msg.popTo > ( self->txsPopVersions.size() ? self->txsPopVersions.back().second : self->lastTxsPop ) ) { if(self->txsPopVersions.size() >= SERVER_KNOBS->MAX_TXS_POP_VERSION_HISTORY) { TraceEvent(SevWarnAlways, "DiscardingTxsPopHistory").suppressFor(1.0); self->txsPopVersions.pop_front(); } self->txsPopVersions.emplace_back(commitVersion, msg.popTo); } self->logSystem->popTxs(msg.popTo); /////// Phase 5: Replies (CPU bound; no particular order required, though ordered execution would be best for latency) if ( prevVersion && commitVersion - prevVersion < SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT/2 ) debug_advanceMinCommittedVersion(UID(), commitVersion); //TraceEvent("ProxyPushed", self->dbgid).detail("PrevVersion", prevVersion).detail("Version", commitVersion); if (debugID.present()) g_traceBatch.addEvent("CommitDebug", debugID.get().first(), "MasterProxyServer.commitBatch.AfterLogPush"); for (auto &p : storeCommits) { ASSERT(!p.second.isReady()); p.first.get().acknowledge.send(Void()); ASSERT(p.second.isReady()); } TEST(self->committedVersion.get() > commitVersion); // A later version was reported committed first if( commitVersion > self->committedVersion.get() ) { self->locked = lockedAfter; self->metadataVersion = metadataVersionAfter; self->committedVersion.set(commitVersion); } if (forceRecovery) { TraceEvent(SevWarn, "RestartingTxnSubsystem", self->dbgid).detail("Stage", "ProxyShutdown"); throw worker_removed(); } // Send replies to clients double endTime = timer(); for (int t = 0; t < trs.size(); t++) { if (committed[t] == ConflictBatch::TransactionCommitted && (!locked || trs[t].isLockAware())) { ASSERT_WE_THINK(commitVersion != invalidVersion); trs[t].reply.send(CommitID(commitVersion, t, metadataVersionAfter)); } else if (committed[t] == ConflictBatch::TransactionTooOld) { trs[t].reply.sendError(transaction_too_old()); } else { trs[t].reply.sendError(not_committed()); } // TODO: filter if pipelined with large commit if(self->latencyBandConfig.present()) { bool filter = maxTransactionBytes > self->latencyBandConfig.get().commitConfig.maxCommitBytes.orDefault(std::numeric_limits::max()); self->stats.commitLatencyBands.addMeasurement(endTime - trs[t].requestTime(), filter); } } ++self->stats.commitBatchOut; self->stats.txnCommitOut += trs.size(); self->stats.txnConflicts += trs.size() - commitCount; self->stats.txnCommitOutSuccess += commitCount; if(now() - self->lastCoalesceTime > SERVER_KNOBS->RESOLVER_COALESCE_TIME) { self->lastCoalesceTime = now(); int lastSize = self->keyResolvers.size(); auto rs = self->keyResolvers.ranges(); Version oldestVersion = prevVersion - SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS; for(auto r = rs.begin(); r != rs.end(); ++r) { while(r->value().size() > 1 && r->value()[1].first < oldestVersion) r->value().pop_front(); if(r->value().size() && r->value().front().first < oldestVersion) r->value().front().first = 0; } self->keyResolvers.coalesce(allKeys); if(self->keyResolvers.size() != lastSize) TraceEvent("KeyResolverSize", self->dbgid).detail("Size", self->keyResolvers.size()); } // Dynamic batching for commits double target_latency = (now() - t1) * SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_LATENCY_FRACTION; self->commitBatchInterval = std::max(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_MIN, std::min(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_MAX, target_latency * SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA + self->commitBatchInterval * (1-SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA))); self->commitBatchesMemBytesCount -= currentBatchMemBytesCount; ASSERT_ABORT(self->commitBatchesMemBytesCount >= 0); return Void(); } ACTOR Future updateLastCommit(ProxyCommitData* self, Optional debugID = Optional()) { state double confirmStart = now(); self->lastStartCommit = confirmStart; wait(self->logSystem->confirmEpochLive(debugID)); self->lastCommitLatency = now()-confirmStart; self->lastCommitTime = std::max(self->lastCommitTime.get(), confirmStart); return Void(); } ACTOR Future getLiveCommittedVersion(ProxyCommitData* commitData, uint32_t flags, vector *otherProxies, Optional debugID, int transactionCount, int systemTransactionCount, int defaultPriTransactionCount, int batchPriTransactionCount) { // Returns a version which (1) is committed, and (2) is >= the latest version reported committed (by a commit response) when this request was sent // (1) The version returned is the committedVersion of some proxy at some point before the request returns, so it is committed. // (2) No proxy on our list reported committed a higher version before this request was received, because then its committedVersion would have been higher, // and no other proxy could have already committed anything without first ending the epoch ++commitData->stats.txnStartBatch; state vector> proxyVersions; for (auto const& p : *otherProxies) proxyVersions.push_back(brokenPromiseToNever(p.getRawCommittedVersion.getReply(GetRawCommittedVersionRequest(debugID), TaskPriority::TLogConfirmRunningReply))); if (!SERVER_KNOBS->ALWAYS_CAUSAL_READ_RISKY && !(flags&GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY)) { wait(updateLastCommit(commitData, debugID)); } else if (SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION > 0 && now() - SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION > commitData->lastCommitTime.get()) { wait(commitData->lastCommitTime.whenAtLeast(now() - SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION)); } if (debugID.present()) g_traceBatch.addEvent("TransactionDebug", debugID.get().first(), "MasterProxyServer.getLiveCommittedVersion.confirmEpochLive"); vector versions = wait(getAll(proxyVersions)); GetReadVersionReply rep; rep.version = commitData->committedVersion.get(); rep.locked = commitData->locked; rep.metadataVersion = commitData->metadataVersion; for (auto v : versions) { if(v.version > rep.version) { rep = v; } } if (debugID.present()) g_traceBatch.addEvent("TransactionDebug", debugID.get().first(), "MasterProxyServer.getLiveCommittedVersion.After"); commitData->stats.txnStartOut += transactionCount; commitData->stats.txnSystemPriorityStartOut += systemTransactionCount; commitData->stats.txnDefaultPriorityStartOut += defaultPriTransactionCount; commitData->stats.txnBatchPriorityStartOut += batchPriTransactionCount; return rep; } ACTOR Future fetchVersions(ProxyCommitData *commitData) { loop { waitNext(commitData->commitBatchStartNotifications.getFuture()); GetCommitVersionRequest req(commitData->commitVersionRequestNumber++, commitData->mostRecentProcessedRequestNumber, commitData->dbgid); commitData->commitBatchVersions.send(brokenPromiseToNever(commitData->master.getCommitVersion.getReply(req))); } } struct TransactionRateInfo { double rate; double limit; TransactionRateInfo(double rate) : rate(rate), limit(0) {} void reset(double elapsed) { limit = std::min(0.0,limit) + std::min(rate * elapsed, SERVER_KNOBS->START_TRANSACTION_MAX_TRANSACTIONS_TO_START); } bool canStart(int64_t numAlreadyStarted) { return numAlreadyStarted < limit; } void updateBudget(int64_t numStarted) { limit -= numStarted; } }; ACTOR Future sendGrvReplies(Future replyFuture, std::vector requests, ProxyStats *stats) { GetReadVersionReply reply = wait(replyFuture); double end = timer(); for(GetReadVersionRequest const& request : requests) { stats->grvLatencyBands.addMeasurement(end - request.requestTime()); request.reply.send(reply); } return Void(); } ACTOR static Future transactionStarter( MasterProxyInterface proxy, Reference> db, PromiseStream> addActor, ProxyCommitData* commitData, GetHealthMetricsReply* healthMetricsReply, GetHealthMetricsReply* detailedHealthMetricsReply) { state double lastGRVTime = 0; state PromiseStream GRVTimer; state double GRVBatchTime = SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_MIN; state int64_t transactionCount = 0; state int64_t batchTransactionCount = 0; state TransactionRateInfo normalRateInfo(10); state TransactionRateInfo batchRateInfo(0); state std::priority_queue, std::vector>> transactionQueue; state vector otherProxies; state PromiseStream replyTimes; addActor.send(getRate(proxy.id(), db, &transactionCount, &batchTransactionCount, &normalRateInfo.rate, &batchRateInfo.rate, healthMetricsReply, detailedHealthMetricsReply)); addActor.send(queueTransactionStartRequests(&transactionQueue, proxy.getConsistentReadVersion.getFuture(), GRVTimer, &lastGRVTime, &GRVBatchTime, replyTimes.getFuture(), &commitData->stats)); // Get a list of the other proxies that go together with us while (std::find(db->get().client.proxies.begin(), db->get().client.proxies.end(), proxy) == db->get().client.proxies.end()) wait(db->onChange()); for (MasterProxyInterface mp : db->get().client.proxies) { if (mp != proxy) otherProxies.push_back(mp); } ASSERT(db->get().recoveryState >= RecoveryState::ACCEPTING_COMMITS); // else potentially we could return uncommitted read versions (since self->committedVersion is only a committed version if this recovery succeeds) TraceEvent("ProxyReadyForTxnStarts", proxy.id()); loop{ waitNext(GRVTimer.getFuture()); // Select zero or more transactions to start double t = now(); double elapsed = std::min(now() - lastGRVTime, SERVER_KNOBS->START_TRANSACTION_BATCH_INTERVAL_MAX); lastGRVTime = t; if(elapsed == 0) elapsed = 1e-15; // resolve a possible indeterminant multiplication with infinite transaction rate normalRateInfo.reset(elapsed); batchRateInfo.reset(elapsed); int transactionsStarted[2] = {0,0}; int systemTransactionsStarted[2] = {0,0}; int defaultPriTransactionsStarted[2] = { 0, 0 }; int batchPriTransactionsStarted[2] = { 0, 0 }; vector> start(2); // start[0] is transactions starting with !(flags&CAUSAL_READ_RISKY), start[1] is transactions starting with flags&CAUSAL_READ_RISKY Optional debugID; int requestsToStart = 0; while (!transactionQueue.empty() && requestsToStart < SERVER_KNOBS->START_TRANSACTION_MAX_REQUESTS_TO_START) { auto& req = transactionQueue.top().first; int tc = req.transactionCount; if(req.priority() < GetReadVersionRequest::PRIORITY_DEFAULT && !batchRateInfo.canStart(transactionsStarted[0] + transactionsStarted[1])) { break; } else if(req.priority() < GetReadVersionRequest::PRIORITY_SYSTEM_IMMEDIATE && !normalRateInfo.canStart(transactionsStarted[0] + transactionsStarted[1])) { break; } if (req.debugID.present()) { if (!debugID.present()) debugID = nondeterministicRandom()->randomUniqueID(); g_traceBatch.addAttach("TransactionAttachID", req.debugID.get().first(), debugID.get().first()); } transactionsStarted[req.flags&1] += tc; if (req.priority() >= GetReadVersionRequest::PRIORITY_SYSTEM_IMMEDIATE) systemTransactionsStarted[req.flags & 1] += tc; else if (req.priority() >= GetReadVersionRequest::PRIORITY_DEFAULT) defaultPriTransactionsStarted[req.flags & 1] += tc; else batchPriTransactionsStarted[req.flags & 1] += tc; start[req.flags & 1].push_back(std::move(req)); static_assert(GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY == 1, "Implementation dependent on flag value"); transactionQueue.pop(); requestsToStart++; } if (!transactionQueue.empty()) forwardPromise(GRVTimer, delayJittered(SERVER_KNOBS->START_TRANSACTION_BATCH_QUEUE_CHECK_INTERVAL, TaskPriority::ProxyGRVTimer)); /*TraceEvent("GRVBatch", proxy.id()) .detail("Elapsed", elapsed) .detail("NTransactionToStart", nTransactionsToStart) .detail("TransactionRate", transactionRate) .detail("TransactionQueueSize", transactionQueue.size()) .detail("NumTransactionsStarted", transactionsStarted[0] + transactionsStarted[1]) .detail("NumSystemTransactionsStarted", systemTransactionsStarted[0] + systemTransactionsStarted[1]) .detail("NumNonSystemTransactionsStarted", transactionsStarted[0] + transactionsStarted[1] - systemTransactionsStarted[0] - systemTransactionsStarted[1]) .detail("TransactionBudget", transactionBudget) .detail("BatchTransactionBudget", batchTransactionBudget);*/ transactionCount += transactionsStarted[0] + transactionsStarted[1]; batchTransactionCount += batchPriTransactionsStarted[0] + batchPriTransactionsStarted[1]; normalRateInfo.updateBudget(transactionsStarted[0] + transactionsStarted[1]); batchRateInfo.updateBudget(transactionsStarted[0] + transactionsStarted[1]); if (debugID.present()) { g_traceBatch.addEvent("TransactionDebug", debugID.get().first(), "MasterProxyServer.masterProxyServerCore.Broadcast"); } for (int i = 0; i < start.size(); i++) { if (start[i].size()) { Future readVersionReply = getLiveCommittedVersion(commitData, i, &otherProxies, debugID, transactionsStarted[i], systemTransactionsStarted[i], defaultPriTransactionsStarted[i], batchPriTransactionsStarted[i]); addActor.send(sendGrvReplies(readVersionReply, start[i], &commitData->stats)); // for now, base dynamic batching on the time for normal requests (not read_risky) if (i == 0) { addActor.send(timeReply(readVersionReply, replyTimes)); } } } } } ACTOR static Future readRequestServer( MasterProxyInterface proxy, ProxyCommitData* commitData ) { // Implement read-only parts of the proxy interface // We can't respond to these requests until we have valid txnStateStore wait(commitData->validState.getFuture()); TraceEvent("ProxyReadyForReads", proxy.id()); loop { GetKeyServerLocationsRequest req = waitNext(proxy.getKeyServersLocations.getFuture()); ++commitData->stats.keyServerLocationRequests; GetKeyServerLocationsReply rep; if(!req.end.present()) { auto r = req.reverse ? commitData->keyInfo.rangeContainingKeyBefore(req.begin) : commitData->keyInfo.rangeContaining(req.begin); vector ssis; ssis.reserve(r.value().src_info.size()); for(auto& it : r.value().src_info) { ssis.push_back(it->interf); } rep.results.push_back(std::make_pair(r.range(), ssis)); } else if(!req.reverse) { int count = 0; for(auto r = commitData->keyInfo.rangeContaining(req.begin); r != commitData->keyInfo.ranges().end() && count < req.limit && r.begin() < req.end.get(); ++r) { vector ssis; ssis.reserve(r.value().src_info.size()); for(auto& it : r.value().src_info) { ssis.push_back(it->interf); } rep.results.push_back(std::make_pair(r.range(), ssis)); count++; } } else { int count = 0; auto r = commitData->keyInfo.rangeContainingKeyBefore(req.end.get()); while( count < req.limit && req.begin < r.end() ) { vector ssis; ssis.reserve(r.value().src_info.size()); for(auto& it : r.value().src_info) { ssis.push_back(it->interf); } rep.results.push_back(std::make_pair(r.range(), ssis)); if(r == commitData->keyInfo.ranges().begin()) { break; } count++; --r; } } req.reply.send(rep); wait(yield()); } } ACTOR static Future rejoinServer( MasterProxyInterface proxy, ProxyCommitData* commitData ) { // We can't respond to these requests until we have valid txnStateStore wait(commitData->validState.getFuture()); loop { GetStorageServerRejoinInfoRequest req = waitNext(proxy.getStorageServerRejoinInfo.getFuture()); if (commitData->txnStateStore->readValue(serverListKeyFor(req.id)).get().present()) { GetStorageServerRejoinInfoReply rep; rep.version = commitData->version; rep.tag = decodeServerTagValue( commitData->txnStateStore->readValue(serverTagKeyFor(req.id)).get().get() ); Standalone> history = commitData->txnStateStore->readRange(serverTagHistoryRangeFor(req.id)).get(); for(int i = history.size()-1; i >= 0; i-- ) { rep.history.push_back(std::make_pair(decodeServerTagHistoryKey(history[i].key), decodeServerTagValue(history[i].value))); } auto localityKey = commitData->txnStateStore->readValue(tagLocalityListKeyFor(req.dcId)).get(); if( localityKey.present() ) { rep.newLocality = false; int8_t locality = decodeTagLocalityListValue(localityKey.get()); if(locality != rep.tag.locality) { uint16_t tagId = 0; std::vector usedTags; auto tagKeys = commitData->txnStateStore->readRange(serverTagKeys).get(); for( auto& kv : tagKeys ) { Tag t = decodeServerTagValue( kv.value ); if(t.locality == locality) { usedTags.push_back(t.id); } } auto historyKeys = commitData->txnStateStore->readRange(serverTagHistoryKeys).get(); for( auto& kv : historyKeys ) { Tag t = decodeServerTagValue( kv.value ); if(t.locality == locality) { usedTags.push_back(t.id); } } std::sort(usedTags.begin(), usedTags.end()); int usedIdx = 0; for(; usedTags.size() > 0 && tagId <= usedTags.end()[-1]; tagId++) { if(tagId < usedTags[usedIdx]) { break; } else { usedIdx++; } } rep.newTag = Tag(locality, tagId); } } else { rep.newLocality = true; int8_t maxTagLocality = -1; auto localityKeys = commitData->txnStateStore->readRange(tagLocalityListKeys).get(); for( auto& kv : localityKeys ) { maxTagLocality = std::max(maxTagLocality, decodeTagLocalityListValue( kv.value )); } rep.newTag = Tag(maxTagLocality+1,0); } req.reply.send(rep); } else { req.reply.sendError(worker_removed()); } } } ACTOR Future healthMetricsRequestServer(MasterProxyInterface proxy, GetHealthMetricsReply* healthMetricsReply, GetHealthMetricsReply* detailedHealthMetricsReply) { loop { choose { when(GetHealthMetricsRequest req = waitNext(proxy.getHealthMetrics.getFuture())) { if (req.detailed) req.reply.send(*detailedHealthMetricsReply); else req.reply.send(*healthMetricsReply); } } } } ACTOR Future monitorRemoteCommitted(ProxyCommitData* self) { loop { wait(delay(0)); //allow this actor to be cancelled if we are removed after db changes. state Optional>> remoteLogs; if(self->db->get().recoveryState >= RecoveryState::ALL_LOGS_RECRUITED) { for(auto& logSet : self->db->get().logSystemConfig.tLogs) { if(!logSet.isLocal) { remoteLogs = logSet.tLogs; for(auto& tLog : logSet.tLogs) { if(!tLog.present()) { remoteLogs = Optional>>(); break; } } break; } } } if(!remoteLogs.present()) { wait(self->db->onChange()); continue; } self->popRemoteTxs = true; state Future onChange = self->db->onChange(); loop { state std::vector> replies; for(auto &it : remoteLogs.get()) { replies.push_back(brokenPromiseToNever( it.interf().getQueuingMetrics.getReply( TLogQueuingMetricsRequest() ) )); } wait( waitForAll(replies) || onChange ); if(onChange.isReady()) { break; } //FIXME: use the configuration to calculate a more precise minimum recovery version. Version minVersion = std::numeric_limits::max(); for(auto& it : replies) { minVersion = std::min(minVersion, it.get().v); } while(self->txsPopVersions.size() && self->txsPopVersions.front().first <= minVersion) { self->lastTxsPop = self->txsPopVersions.front().second; self->logSystem->popTxs(self->txsPopVersions.front().second, tagLocalityRemoteLog); self->txsPopVersions.pop_front(); } wait( delay(SERVER_KNOBS->UPDATE_REMOTE_LOG_VERSION_INTERVAL) || onChange ); if(onChange.isReady()) { break; } } } } ACTOR Future lastCommitUpdater(ProxyCommitData* self, PromiseStream> addActor) { loop { double interval = std::max(SERVER_KNOBS->MIN_CONFIRM_INTERVAL, (SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION - self->lastCommitLatency)/2.0); double elapsed = now()-self->lastStartCommit; if(elapsed < interval) { wait( delay(interval + 0.0001 - elapsed) ); } else { addActor.send(updateLastCommit(self)); } } } ACTOR Future proxySnapCreate(ProxySnapRequest snapReq, ProxyCommitData* commitData) { TraceEvent("SnapMasterProxy_SnapReqEnter") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID); try { // whitelist check ExecCmdValueString execArg(snapReq.snapPayload); StringRef binPath = execArg.getBinaryPath(); if (!isWhitelisted(commitData->whitelistedBinPathVec, binPath)) { TraceEvent("SnapMasterProxy_WhiteListCheckFailed") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID); throw transaction_not_permitted(); } // db fully recovered check if (commitData->db->get().recoveryState != RecoveryState::FULLY_RECOVERED) { // Cluster is not fully recovered and needs TLogs // from previous generation for full recovery. // Currently, snapshot of old tlog generation is not // supported and hence failing the snapshot request until // cluster is fully_recovered. TraceEvent("SnapMasterProxy_ClusterNotFullyRecovered") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID); throw cluster_not_fully_recovered(); } auto result = commitData->txnStateStore->readValue(LiteralStringRef("log_anti_quorum").withPrefix(configKeysPrefix)).get(); int logAntiQuorum = 0; if (result.present()) { logAntiQuorum = atoi(result.get().toString().c_str()); } // FIXME: logAntiQuorum not supported, remove it later, // In version2, we probably don't need this limtiation, but this needs to be tested. if (logAntiQuorum > 0) { TraceEvent("SnapMasterProxy_LogAnitQuorumNotSupported") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID); throw txn_exec_log_anti_quorum(); } // send a snap request to DD if (!commitData->db->get().distributor.present()) { TraceEvent(SevWarnAlways, "DataDistributorNotPresent").detail("Operation", "SnapRequest"); throw operation_failed(); } state Future> ddSnapReq = commitData->db->get().distributor.get().distributorSnapReq.tryGetReply(DistributorSnapRequest(snapReq.snapPayload, snapReq.snapUID)); try { wait(throwErrorOr(ddSnapReq)); } catch (Error& e) { TraceEvent("SnapMasterProxy_DDSnapResponseError") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID) .error(e, true /*includeCancelled*/ ); throw e; } snapReq.reply.send(Void()); } catch (Error& e) { TraceEvent("SnapMasterProxy_SnapReqError") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID) .error(e, true /*includeCancelled*/); if (e.code() != error_code_operation_cancelled) { snapReq.reply.sendError(e); } else { throw e; } } TraceEvent("SnapMasterProxy_SnapReqExit") .detail("SnapPayload", snapReq.snapPayload) .detail("SnapUID", snapReq.snapUID); return Void(); } ACTOR Future proxyCheckSafeExclusion(Reference> db, ExclusionSafetyCheckRequest req) { TraceEvent("SafetyCheckMasterProxyBegin"); if (!db->get().distributor.present()) { TraceEvent(SevWarnAlways, "DataDistributorNotPresent").detail("Operation", "ExclusionSafetyCheck"); req.reply.send(false); return Void(); } state bool safe = false; try { state Future> safeFuture = db->get().distributor.get().distributorExclCheckReq.tryGetReply( DistributorExclusionSafetyCheckRequest(req.exclusions)); bool _safe = wait(throwErrorOr(safeFuture)); safe = _safe; } catch (Error& e) { TraceEvent("SafetyCheckMasterProxy.DDSafetyCheckResponseError").error(e); if (e.code() != error_code_operation_cancelled) { req.reply.sendError(e); return Void(); } else { throw e; } } req.reply.send(safe); return Void(); } ACTOR Future masterProxyServerCore( MasterProxyInterface proxy, MasterInterface master, Reference> db, LogEpoch epoch, Version recoveryTransactionVersion, bool firstProxy, std::string whitelistBinPaths) { state ProxyCommitData commitData(proxy.id(), master, proxy.getConsistentReadVersion, recoveryTransactionVersion, proxy.commit, db, firstProxy); state Future sequenceFuture = (Sequence)0; state PromiseStream< std::pair, int> > batchedCommits; state Future commitBatcherActor; state Future lastCommitComplete = Void(); state PromiseStream> addActor; state Future onError = transformError( actorCollection(addActor.getFuture()), broken_promise(), master_tlog_failed() ); state double lastCommit = 0; state std::set txnSequences; state Sequence maxSequence = std::numeric_limits::max(); state GetHealthMetricsReply healthMetricsReply; state GetHealthMetricsReply detailedHealthMetricsReply; addActor.send( fetchVersions(&commitData) ); addActor.send( waitFailureServer(proxy.waitFailure.getFuture()) ); //TraceEvent("ProxyInit1", proxy.id()); // Wait until we can load the "real" logsystem, since we don't support switching them currently while (!(commitData.db->get().master.id() == master.id() && commitData.db->get().recoveryState >= RecoveryState::RECOVERY_TRANSACTION)) { //TraceEvent("ProxyInit2", proxy.id()).detail("LSEpoch", db->get().logSystemConfig.epoch).detail("Need", epoch); wait(commitData.db->onChange()); } state Future dbInfoChange = commitData.db->onChange(); //TraceEvent("ProxyInit3", proxy.id()); commitData.resolvers = commitData.db->get().resolvers; ASSERT(commitData.resolvers.size() != 0); auto rs = commitData.keyResolvers.modify(allKeys); for(auto r = rs.begin(); r != rs.end(); ++r) r->value().emplace_back(0,0); commitData.logSystem = ILogSystem::fromServerDBInfo(proxy.id(), commitData.db->get(), false, addActor); commitData.logAdapter = new LogSystemDiskQueueAdapter(commitData.logSystem, Reference>(), 1, false); commitData.txnStateStore = keyValueStoreLogSystem(commitData.logAdapter, proxy.id(), 2e9, true, true, true); createWhitelistBinPathVec(whitelistBinPaths, commitData.whitelistedBinPathVec); // ((SERVER_MEM_LIMIT * COMMIT_BATCHES_MEM_FRACTION_OF_TOTAL) / COMMIT_BATCHES_MEM_TO_TOTAL_MEM_SCALE_FACTOR) is only a approximate formula for limiting the memory used. // COMMIT_BATCHES_MEM_TO_TOTAL_MEM_SCALE_FACTOR is an estimate based on experiments and not an accurate one. state int64_t commitBatchesMemoryLimit = std::min(SERVER_KNOBS->COMMIT_BATCHES_MEM_BYTES_HARD_LIMIT, static_cast((SERVER_KNOBS->SERVER_MEM_LIMIT * SERVER_KNOBS->COMMIT_BATCHES_MEM_FRACTION_OF_TOTAL) / SERVER_KNOBS->COMMIT_BATCHES_MEM_TO_TOTAL_MEM_SCALE_FACTOR)); TraceEvent(SevInfo, "CommitBatchesMemoryLimit").detail("BytesLimit", commitBatchesMemoryLimit); addActor.send(monitorRemoteCommitted(&commitData)); addActor.send(transactionStarter(proxy, commitData.db, addActor, &commitData, &healthMetricsReply, &detailedHealthMetricsReply)); addActor.send(readRequestServer(proxy, &commitData)); addActor.send(rejoinServer(proxy, &commitData)); addActor.send(healthMetricsRequestServer(proxy, &healthMetricsReply, &detailedHealthMetricsReply)); // wait for txnStateStore recovery wait(success(commitData.txnStateStore->readValue(StringRef()))); if(SERVER_KNOBS->REQUIRED_MIN_RECOVERY_DURATION > 0) { addActor.send(lastCommitUpdater(&commitData, addActor)); } int commitBatchByteLimit = (int)std::min(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_BYTES_MAX, std::max(SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_BYTES_MIN, SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_BYTES_SCALE_BASE * pow(commitData.db->get().client.proxies.size(), SERVER_KNOBS->COMMIT_TRANSACTION_BATCH_BYTES_SCALE_POWER))); commitBatcherActor = commitBatcher(&commitData, batchedCommits, proxy.commit.getFuture(), commitBatchByteLimit, commitBatchesMemoryLimit); loop choose{ when( wait( dbInfoChange ) ) { dbInfoChange = commitData.db->onChange(); if(commitData.db->get().master.id() == master.id() && commitData.db->get().recoveryState >= RecoveryState::RECOVERY_TRANSACTION) { commitData.logSystem = ILogSystem::fromServerDBInfo(proxy.id(), commitData.db->get(), false, addActor); for(auto it : commitData.tag_popped) { commitData.logSystem->pop(it.second, it.first); } commitData.logSystem->popTxs(commitData.lastTxsPop, tagLocalityRemoteLog); } Optional newLatencyBandConfig = commitData.db->get().latencyBandConfig; if(newLatencyBandConfig.present() != commitData.latencyBandConfig.present() || (newLatencyBandConfig.present() && newLatencyBandConfig.get().grvConfig != commitData.latencyBandConfig.get().grvConfig)) { TraceEvent("LatencyBandGrvUpdatingConfig").detail("Present", newLatencyBandConfig.present()); commitData.stats.grvLatencyBands.clearBands(); if(newLatencyBandConfig.present()) { for(auto band : newLatencyBandConfig.get().grvConfig.bands) { commitData.stats.grvLatencyBands.addThreshold(band); } } } if(newLatencyBandConfig.present() != commitData.latencyBandConfig.present() || (newLatencyBandConfig.present() && newLatencyBandConfig.get().commitConfig != commitData.latencyBandConfig.get().commitConfig)) { TraceEvent("LatencyBandCommitUpdatingConfig").detail("Present", newLatencyBandConfig.present()); commitData.stats.commitLatencyBands.clearBands(); if(newLatencyBandConfig.present()) { for(auto band : newLatencyBandConfig.get().commitConfig.bands) { commitData.stats.commitLatencyBands.addThreshold(band); } } } commitData.latencyBandConfig = newLatencyBandConfig; } when(wait(onError)) {} when(std::pair, int> batchedRequests = waitNext(batchedCommits.getFuture())) { const vector &trs = batchedRequests.first; int batchBytes = batchedRequests.second; //TraceEvent("MasterProxyCTR", proxy.id()).detail("CommitTransactions", trs.size()).detail("TransactionRate", transactionRate).detail("TransactionQueue", transactionQueue.size()).detail("ReleasedTransactionCount", transactionCount); if (trs.size() || (commitData.db->get().recoveryState >= RecoveryState::ACCEPTING_COMMITS && now() - lastCommit >= SERVER_KNOBS->MAX_COMMIT_BATCH_INTERVAL)) { lastCommit = now(); if (trs.size() || lastCommitComplete.isReady()) { lastCommitComplete = commitBatch(&commitData, trs, batchBytes); addActor.send(lastCommitComplete); } } } when(GetRawCommittedVersionRequest req = waitNext(proxy.getRawCommittedVersion.getFuture())) { //TraceEvent("ProxyGetRCV", proxy.id()); if (req.debugID.present()) g_traceBatch.addEvent("TransactionDebug", req.debugID.get().first(), "MasterProxyServer.masterProxyServerCore.GetRawCommittedVersion"); GetReadVersionReply rep; rep.locked = commitData.locked; rep.metadataVersion = commitData.metadataVersion; rep.version = commitData.committedVersion.get(); req.reply.send(rep); } when(ProxySnapRequest snapReq = waitNext(proxy.proxySnapReq.getFuture())) { TraceEvent(SevDebug, "SnapMasterEnqueue"); addActor.send(proxySnapCreate(snapReq, &commitData)); } when(ExclusionSafetyCheckRequest exclCheckReq = waitNext(proxy.exclusionSafetyCheckReq.getFuture())) { addActor.send(proxyCheckSafeExclusion(db, exclCheckReq)); } when(TxnStateRequest req = waitNext(proxy.txnState.getFuture())) { state ReplyPromise reply = req.reply; if(req.last) maxSequence = req.sequence + 1; if (!txnSequences.count(req.sequence)) { txnSequences.insert(req.sequence); ASSERT(!commitData.validState.isSet()); // Although we may receive the CommitTransactionRequest for the recovery transaction before all of the TxnStateRequest, we will not get a resolution result from any resolver until the master has submitted its initial (sequence 0) resolution request, which it doesn't do until we have acknowledged all TxnStateRequests for(auto& kv : req.data) commitData.txnStateStore->set(kv, &req.arena); commitData.txnStateStore->commit(true); if(txnSequences.size() == maxSequence) { state KeyRange txnKeys = allKeys; loop { wait(yield()); Standalone> data = commitData.txnStateStore->readRange(txnKeys, SERVER_KNOBS->BUGGIFIED_ROW_LIMIT, SERVER_KNOBS->APPLY_MUTATION_BYTES).get(); if(!data.size()) break; ((KeyRangeRef&)txnKeys) = KeyRangeRef( keyAfter(data.back().key, txnKeys.arena()), txnKeys.end ); Standalone> mutations; std::vector,int>> keyInfoData; vector src, dest; ServerCacheInfo info; for(auto &kv : data) { if( kv.key.startsWith(keyServersPrefix) ) { KeyRef k = kv.key.removePrefix(keyServersPrefix); if(k != allKeys.end) { decodeKeyServersValue(kv.value, src, dest); info.tags.clear(); info.src_info.clear(); info.dest_info.clear(); for (const auto& id : src) { auto storageInfo = getStorageInfo(id, &commitData.storageCache, commitData.txnStateStore); ASSERT(storageInfo->tag != invalidTag); info.tags.push_back( storageInfo->tag ); info.src_info.push_back( storageInfo ); } for (const auto& id : dest) { auto storageInfo = getStorageInfo(id, &commitData.storageCache, commitData.txnStateStore); ASSERT(storageInfo->tag != invalidTag); info.tags.push_back( storageInfo->tag ); info.dest_info.push_back( storageInfo ); } uniquify(info.tags); keyInfoData.emplace_back(MapPair(k, info), 1); } } else { mutations.push_back(mutations.arena(), MutationRef(MutationRef::SetValue, kv.key, kv.value)); } } //insert keyTag data separately from metadata mutations so that we can do one bulk insert which avoids a lot of map lookups. commitData.keyInfo.rawInsert(keyInfoData); Arena arena; bool confChanges; applyMetadataMutations(commitData.dbgid, arena, mutations, commitData.txnStateStore, NULL, &confChanges, Reference(), 0, &commitData.vecBackupKeys, &commitData.keyInfo, commitData.firstProxy ? &commitData.uid_applyMutationsData : NULL, commitData.commit, commitData.cx, &commitData.committedVersion, &commitData.storageCache, &commitData.tag_popped, true ); } auto lockedKey = commitData.txnStateStore->readValue(databaseLockedKey).get(); commitData.locked = lockedKey.present() && lockedKey.get().size(); commitData.metadataVersion = commitData.txnStateStore->readValue(metadataVersionKey).get(); commitData.txnStateStore->enableSnapshot(); } } reply.send(Void()); wait(yield()); } } } ACTOR Future checkRemoved(Reference> db, uint64_t recoveryCount, MasterProxyInterface myInterface) { loop{ if (db->get().recoveryCount >= recoveryCount && !std::count(db->get().client.proxies.begin(), db->get().client.proxies.end(), myInterface)) { throw worker_removed(); } wait(db->onChange()); } } ACTOR Future masterProxyServer( MasterProxyInterface proxy, InitializeMasterProxyRequest req, Reference> db, std::string whitelistBinPaths) { try { state Future core = masterProxyServerCore(proxy, req.master, db, req.recoveryCount, req.recoveryTransactionVersion, req.firstProxy, whitelistBinPaths); wait(core || checkRemoved(db, req.recoveryCount, proxy)); } catch (Error& e) { TraceEvent("MasterProxyTerminated", proxy.id()).error(e, true); if (e.code() != error_code_worker_removed && e.code() != error_code_tlog_stopped && e.code() != error_code_master_tlog_failed && e.code() != error_code_coordinators_changed && e.code() != error_code_coordinated_state_conflict && e.code() != error_code_new_coordinators_timed_out) { throw; } } return Void(); }