Recruit new singleton for consistency checker. (#5804)

* Recruit new singleton for consistency checker.

* Recruit the consistency checker only if enabled.

* Add a yield in monitorConsistencyChecker().

* Minor fixes.

* Consistency check workload enhancements.

* Minor fixes and clarifications.

* clang format

* Clang format.

* Minor fixes, cleanup, debug tracing.

* Misc.

* Move the consistency scan information from dbconfig to a key backed object.

* Move consistency scan config out of db cofig to a state object and feature rename.

* ConsistencyCheck workload refactor.

* devFormat

* Update fdbcli/ConsistencyScanCommand.actor.cpp

* Review Comments.

Co-authored-by: negoyal <neelam.goyal@gmail.com>
Co-authored-by: Ata E Husain Bohra <ata.husain@snowflake.com>
This commit is contained in:
sfc-gh-ngoyal 2022-09-16 09:03:06 -07:00 committed by GitHub
parent 17c855be7e
commit 1bd97fe628
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 1836 additions and 886 deletions

View File

@ -0,0 +1,122 @@
/*
* ConsistencyScanCommand.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbcli/fdbcli.actor.h"
#include "fdbclient/FDBOptions.g.h"
#include "fdbclient/IClientApi.h"
#include "flow/Arena.h"
#include "flow/FastRef.h"
#include "flow/ThreadHelper.actor.h"
#include "fdbclient/ConsistencyScanInterface.h"
#include "flow/actorcompiler.h" // This must be the last #include.
namespace fdb_cli {
ACTOR Future<bool> consistencyScanCommandActor(Database db, std::vector<StringRef> tokens) {
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(db);
// Here we do not proceed in a try-catch loop since the transaction is always supposed to succeed.
// If not, the outer loop catch block(fdbcli.actor.cpp) will handle the error and print out the error message
state int usageError = 0;
state ConsistencyScanInfo csInfo = ConsistencyScanInfo();
tr->setOption(FDBTransactionOptions::SPECIAL_KEY_SPACE_ENABLE_WRITES);
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
// Get the exisiting consistencyScanInfo object if present
state Optional<Value> consistencyScanInfo = wait(ConsistencyScanInfo::getInfo(tr));
wait(tr->commit());
if (consistencyScanInfo.present())
csInfo = ObjectReader::fromStringRef<ConsistencyScanInfo>(consistencyScanInfo.get(), IncludeVersion());
tr->reset();
if (tokens.size() == 1) {
printf("Consistency Scan Info: %s\n", csInfo.toString().c_str());
} else if ((tokens.size() == 2) && tokencmp(tokens[1], "off")) {
csInfo.consistency_scan_enabled = false;
wait(ConsistencyScanInfo::setInfo(tr, csInfo));
wait(tr->commit());
} else if ((tokencmp(tokens[1], "on") && tokens.size() > 2)) {
csInfo.consistency_scan_enabled = true;
state std::vector<StringRef>::iterator t;
for (t = tokens.begin() + 2; t != tokens.end(); ++t) {
if (tokencmp(t->toString(), "restart")) {
if (++t != tokens.end()) {
if (tokencmp(t->toString(), "0")) {
csInfo.restart = false;
} else if (tokencmp(t->toString(), "1")) {
csInfo.restart = true;
} else {
usageError = 1;
}
} else {
usageError = 1;
}
} else if (tokencmp(t->toString(), "maxRate")) {
if (++t != tokens.end()) {
char* end;
csInfo.max_rate = std::strtod(t->toString().data(), &end);
if (!std::isspace(*end) && (*end != '\0')) {
fprintf(stderr, "ERROR: %s failed to parse.\n", t->toString().c_str());
return false;
}
} else {
usageError = 1;
}
} else if (tokencmp(t->toString(), "targetInterval")) {
if (++t != tokens.end()) {
char* end;
csInfo.target_interval = std::strtod(t->toString().data(), &end);
if (!std::isspace(*end) && (*end != '\0')) {
fprintf(stderr, "ERROR: %s failed to parse.\n", t->toString().c_str());
return false;
}
} else {
usageError = 1;
}
} else {
usageError = 1;
}
}
if (!usageError) {
wait(ConsistencyScanInfo::setInfo(tr, csInfo));
wait(tr->commit());
}
} else {
usageError = 1;
}
if (usageError) {
printUsage(tokens[0]);
return false;
}
return true;
}
CommandFactory consistencyScanFactory(
"consistencyscan",
CommandHelp("consistencyscan <on|off> <restart 0|1> <maxRate val> <targetInterval val>",
"enables or disables consistency scan",
"Calling this command with `on' enables the consistency scan process to run the scan with given "
"arguments and `off' will halt the scan. "
"Calling this command with no arguments will display if consistency scan is currently enabled.\n"));
} // namespace fdb_cli

View File

@ -1582,6 +1582,13 @@ ACTOR Future<int> cli(CLIOptions opt, LineNoise* plinenoise, Reference<ClusterCo
continue;
}
if (tokencmp(tokens[0], "consistencyscan")) {
bool _result = wait(makeInterruptable(consistencyScanCommandActor(localDb, tokens)));
if (!_result)
is_error = true;
continue;
}
if (tokencmp(tokens[0], "profile")) {
getTransaction(db, managementTenant, tr, options, intrans);
bool _result = wait(makeInterruptable(profileCommandActor(localDb, tr, tokens, intrans)));

View File

@ -166,6 +166,8 @@ ACTOR Future<bool> configureTenantCommandActor(Reference<IDatabase> db, std::vec
ACTOR Future<bool> consistencyCheckCommandActor(Reference<ITransaction> tr,
std::vector<StringRef> tokens,
bool intrans);
// consistency scan command
ACTOR Future<bool> consistencyScanCommandActor(Database localDb, std::vector<StringRef> tokens);
// coordinators command
ACTOR Future<bool> coordinatorsCommandActor(Reference<IDatabase> db, std::vector<StringRef> tokens);
// createtenant command

View File

@ -66,6 +66,16 @@ void parse(int* i, ValueRef const& v) {
*i = atoi(v.toString().c_str());
}
void parse(int64_t* i, ValueRef const& v) {
// FIXME: Sanity checking
*i = atoll(v.toString().c_str());
}
void parse(double* i, ValueRef const& v) {
// FIXME: Sanity checking
*i = atof(v.toString().c_str());
}
void parseReplicationPolicy(Reference<IReplicationPolicy>* policy, ValueRef const& v) {
BinaryReader reader(v, IncludeVersion());
serializeReplicationPolicy(reader, *policy);

View File

@ -137,6 +137,7 @@ const KeyRef JSONSchemas::statusSchema = LiteralStringRef(R"statusSchema(
"blob_manager",
"blob_worker",
"encrypt_key_proxy",
"consistency_scan",
"storage_cache",
"router",
"coordinator"
@ -561,6 +562,7 @@ const KeyRef JSONSchemas::statusSchema = LiteralStringRef(R"statusSchema(
"unreachable_ratekeeper_worker",
"unreachable_blobManager_worker",
"unreachable_encryptKeyProxy_worker",
"unreachable_consistencyScan_worker",
"unreadable_configuration",
"full_replication_timeout",
"client_issues",
@ -855,6 +857,19 @@ const KeyRef JSONSchemas::statusSchema = LiteralStringRef(R"statusSchema(
"aes_256_ctr"
]}
},
"consistency_scan_info":{
"consistency_scan_enabled":false,
"restart":false,
"max_rate":0,
"target_interval":0,
"bytes_read_prev_round":0,
"last_round_start_datetime":"2022-04-20 00:05:05.123 +0000",
"last_round_finish_datetime":"1970-01-01 00:00:00.000 +0000",
"last_round_start_timestamp":1648857905.123,
"last_round_finish_timestamp":0,
"smoothed_round_seconds":1,
"finished_rounds":1
},
"data":{
"least_operating_space_bytes_log_server":0,
"average_partition_size_bytes":0,

View File

@ -546,6 +546,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
init( ATTEMPT_RECRUITMENT_DELAY, 0.035 );
init( WAIT_FOR_DISTRIBUTOR_JOIN_DELAY, 1.0 );
init( WAIT_FOR_RATEKEEPER_JOIN_DELAY, 1.0 );
init( WAIT_FOR_CONSISTENCYSCAN_JOIN_DELAY, 1.0 );
init( WAIT_FOR_BLOB_MANAGER_JOIN_DELAY, 1.0 );
init( WAIT_FOR_ENCRYPT_KEY_PROXY_JOIN_DELAY, 1.0 );
init( WORKER_FAILURE_TIME, 1.0 ); if( randomize && BUGGIFY ) WORKER_FAILURE_TIME = 10.0;
@ -556,6 +557,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
init( CHECK_REMOTE_HEALTH_INTERVAL, 60 );
init( FORCE_RECOVERY_CHECK_DELAY, 5.0 );
init( RATEKEEPER_FAILURE_TIME, 1.0 );
init( CONSISTENCYSCAN_FAILURE_TIME, 1.0 );
init( BLOB_MANAGER_FAILURE_TIME, 1.0 );
init( REPLACE_INTERFACE_DELAY, 60.0 );
init( REPLACE_INTERFACE_CHECK_DELAY, 5.0 );

View File

@ -852,6 +852,8 @@ const KeyRef perpetualStorageWiggleStatsPrefix(
const KeyRef triggerDDTeamInfoPrintKey(LiteralStringRef("\xff/triggerDDTeamInfoPrint"));
const KeyRef consistencyScanInfoKey = "\xff/consistencyScanInfo"_sr;
const KeyRef encryptionAtRestModeConfKey(LiteralStringRef("\xff/conf/encryption_at_rest_mode"));
const KeyRangeRef excludedServersKeys(LiteralStringRef("\xff/conf/excluded/"), LiteralStringRef("\xff/conf/excluded0"));

View File

@ -0,0 +1,189 @@
/*
* ConsistencyScanInterface.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2019 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FDBCLIENT_CONSISTENCYSCANINTERFACE_H
#define FDBCLIENT_CONSISTENCYSCANINTERFACE_H
#include "fdbclient/CommitProxyInterface.h"
#include "fdbclient/DatabaseConfiguration.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/RunTransaction.actor.h"
#include "fdbrpc/fdbrpc.h"
#include "fdbrpc/Locality.h"
struct ConsistencyScanInterface {
constexpr static FileIdentifier file_identifier = 4983265;
RequestStream<ReplyPromise<Void>> waitFailure;
RequestStream<struct HaltConsistencyScanRequest> haltConsistencyScan;
struct LocalityData locality;
UID myId;
ConsistencyScanInterface() {}
explicit ConsistencyScanInterface(const struct LocalityData& l, UID id) : locality(l), myId(id) {}
void initEndpoints() {}
UID id() const { return myId; }
NetworkAddress address() const { return waitFailure.getEndpoint().getPrimaryAddress(); }
bool operator==(const ConsistencyScanInterface& r) const { return id() == r.id(); }
bool operator!=(const ConsistencyScanInterface& r) const { return !(*this == r); }
template <class Archive>
void serialize(Archive& ar) {
serializer(ar, waitFailure, haltConsistencyScan, locality, myId);
}
};
struct HaltConsistencyScanRequest {
constexpr static FileIdentifier file_identifier = 2323417;
UID requesterID;
ReplyPromise<Void> reply;
HaltConsistencyScanRequest() {}
explicit HaltConsistencyScanRequest(UID uid) : requesterID(uid) {}
template <class Ar>
void serialize(Ar& ar) {
serializer(ar, requesterID, reply);
}
};
// consistency scan configuration and metrics
struct ConsistencyScanInfo {
constexpr static FileIdentifier file_identifier = 732125;
bool consistency_scan_enabled = false;
bool restart = false;
int64_t max_rate = 0;
int64_t target_interval = CLIENT_KNOBS->CONSISTENCY_CHECK_ONE_ROUND_TARGET_COMPLETION_TIME;
int64_t bytes_read_prev_round = 0;
KeyRef progress_key = KeyRef();
// Round Metrics - one round of complete validation across all SSs
// Start and finish are in epoch seconds
double last_round_start = 0;
double last_round_finish = 0;
TimerSmoother smoothed_round_duration;
int finished_rounds = 0;
ConsistencyScanInfo() : smoothed_round_duration(20.0 * 60) {}
ConsistencyScanInfo(bool enabled, bool r, uint64_t rate, uint64_t interval)
: consistency_scan_enabled(enabled), restart(r), max_rate(rate), target_interval(interval),
smoothed_round_duration(20.0 * 60) {}
template <class Ar>
void serialize(Ar& ar) {
double round_total;
if (!ar.isDeserializing) {
round_total = smoothed_round_duration.getTotal();
}
serializer(ar,
consistency_scan_enabled,
restart,
max_rate,
target_interval,
bytes_read_prev_round,
last_round_start,
last_round_finish,
round_total,
finished_rounds);
if (ar.isDeserializing) {
smoothed_round_duration.reset(round_total);
}
}
static Future<Void> setInfo(Reference<ReadYourWritesTransaction> tr, ConsistencyScanInfo info) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
tr->set(consistencyScanInfoKey, ObjectWriter::toValue(info, IncludeVersion()));
return Void();
}
static Future<Void> setInfo(Database cx, ConsistencyScanInfo info) {
return runRYWTransaction(
cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Void> { return setInfo(tr, info); });
}
static Future<Optional<Value>> getInfo(Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::READ_LOCK_AWARE);
return tr->get(consistencyScanInfoKey);
}
static Future<Optional<Value>> getInfo(Database cx) {
return runRYWTransaction(
cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Optional<Value>> { return getInfo(tr); });
}
StatusObject toJSON() const {
StatusObject result;
result["consistency_scan_enabled"] = consistency_scan_enabled;
result["restart"] = restart;
result["max_rate"] = max_rate;
result["target_interval"] = target_interval;
result["bytes_read_prev_round"] = bytes_read_prev_round;
result["last_round_start_datetime"] = epochsToGMTString(last_round_start);
result["last_round_finish_datetime"] = epochsToGMTString(last_round_finish);
result["last_round_start_timestamp"] = last_round_start;
result["last_round_finish_timestamp"] = last_round_finish;
result["smoothed_round_seconds"] = smoothed_round_duration.smoothTotal();
result["finished_rounds"] = finished_rounds;
return result;
}
std::string toString() const {
return format("consistency_scan_enabled = %d, restart = %d, max_rate = %ld, target_interval = %ld",
consistency_scan_enabled,
restart,
max_rate,
target_interval);
}
};
Future<Version> getVersion(Database const& cx);
Future<bool> getKeyServers(
Database const& cx,
Promise<std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>>> const& keyServersPromise,
KeyRangeRef const& kr,
bool const& performQuiescentChecks);
Future<bool> getKeyLocations(Database const& cx,
std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>> const& shards,
Promise<Standalone<VectorRef<KeyValueRef>>> const& keyLocationPromise,
bool const& performQuiescentChecks);
Future<bool> checkDataConsistency(Database const& cx,
VectorRef<KeyValueRef> const& keyLocations,
DatabaseConfiguration const& configuration,
std::map<UID, StorageServerInterface> const& tssMapping,
bool const& performQuiescentChecks,
bool const& performTSSCheck,
bool const& firstClient,
bool const& failureIsError,
int const& clientId,
int const& clientCount,
bool const& distributed,
bool const& shuffleShards,
int const& shardSampleFactor,
int64_t const& sharedRandomNumber,
int64_t const& repetitions,
int64_t* const& bytesReadInPreviousRound,
int const& restart,
int64_t const& maxRate,
int64_t const& targetInterval,
KeyRef const& progressKey);
#endif // FDBCLIENT_CONSISTENCYSCANINTERFACE_H

View File

@ -457,6 +457,7 @@ public:
double ATTEMPT_RECRUITMENT_DELAY;
double WAIT_FOR_DISTRIBUTOR_JOIN_DELAY;
double WAIT_FOR_RATEKEEPER_JOIN_DELAY;
double WAIT_FOR_CONSISTENCYSCAN_JOIN_DELAY;
double WAIT_FOR_BLOB_MANAGER_JOIN_DELAY;
double WAIT_FOR_ENCRYPT_KEY_PROXY_JOIN_DELAY;
double WORKER_FAILURE_TIME;
@ -470,6 +471,7 @@ public:
double CHECK_REMOTE_HEALTH_INTERVAL; // Remote DC health refresh interval.
double FORCE_RECOVERY_CHECK_DELAY;
double RATEKEEPER_FAILURE_TIME;
double CONSISTENCYSCAN_FAILURE_TIME;
double BLOB_MANAGER_FAILURE_TIME;
double REPLACE_INTERFACE_DELAY;
double REPLACE_INTERFACE_CHECK_DELAY;

View File

@ -163,6 +163,9 @@ extern const KeyRef cacheChangePrefix;
const Key cacheChangeKeyFor(uint16_t idx);
uint16_t cacheChangeKeyDecodeIndex(const KeyRef& key);
// For persisting the consistency scan configuration and metrics
extern const KeyRef consistencyScanInfoKey;
// "\xff/tss/[[serverId]]" := "[[tssId]]"
extern const KeyRangeRef tssMappingKeys;

View File

@ -240,6 +240,24 @@ ProcessClass::Fitness ProcessClass::machineClassFitness(ClusterRole role) const
default:
return ProcessClass::WorstFit;
}
case ProcessClass::ConsistencyScan:
switch (_class) {
case ProcessClass::ConsistencyScanClass:
return ProcessClass::BestFit;
case ProcessClass::StatelessClass:
return ProcessClass::GoodFit;
case ProcessClass::UnsetClass:
return ProcessClass::UnsetFit;
case ProcessClass::MasterClass:
return ProcessClass::OkayFit;
case ProcessClass::CoordinatorClass:
case ProcessClass::TesterClass:
case ProcessClass::StorageCacheClass:
case ProcessClass::BlobWorkerClass:
return ProcessClass::NeverAssign;
default:
return ProcessClass::WorstFit;
}
case ProcessClass::BlobManager:
switch (_class) {
case ProcessClass::BlobManagerClass:

View File

@ -43,6 +43,7 @@ struct ProcessClass {
DataDistributorClass,
CoordinatorClass,
RatekeeperClass,
ConsistencyScanClass,
StorageCacheClass,
BackupClass,
GrvProxyClass,
@ -72,6 +73,7 @@ struct ProcessClass {
ClusterController,
DataDistributor,
Ratekeeper,
ConsistencyScan,
BlobManager,
BlobWorker,
StorageCache,
@ -110,6 +112,7 @@ public:
else if (s=="data_distributor") _class = DataDistributorClass;
else if (s=="coordinator") _class = CoordinatorClass;
else if (s=="ratekeeper") _class = RatekeeperClass;
else if (s=="consistency_scan") _class = ConsistencyScanClass;
else if (s=="blob_manager") _class = BlobManagerClass;
else if (s=="blob_worker") _class = BlobWorkerClass;
else if (s=="storage_cache") _class = StorageCacheClass;
@ -140,6 +143,7 @@ public:
else if (classStr=="data_distributor") _class = DataDistributorClass;
else if (classStr=="coordinator") _class = CoordinatorClass;
else if (classStr=="ratekeeper") _class = RatekeeperClass;
else if (classStr=="consistency_scan") _class = ConsistencyScanClass;
else if (classStr=="blob_manager") _class = BlobManagerClass;
else if (classStr=="blob_worker") _class = BlobWorkerClass;
else if (classStr=="storage_cache") _class = StorageCacheClass;
@ -180,6 +184,7 @@ public:
case DataDistributorClass: return "data_distributor";
case CoordinatorClass: return "coordinator";
case RatekeeperClass: return "ratekeeper";
case ConsistencyScanClass: return "consistency_scan";
case BlobManagerClass: return "blob_manager";
case BlobWorkerClass: return "blob_worker";
case StorageCacheClass: return "storage_cache";

View File

@ -186,6 +186,8 @@ public:
return false;
case ProcessClass::RatekeeperClass:
return false;
case ProcessClass::ConsistencyScanClass:
return false;
case ProcessClass::BlobManagerClass:
return false;
case ProcessClass::StorageCacheClass:

View File

@ -26,6 +26,7 @@
#include <vector>
#include "fdbclient/SystemData.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbclient/EncryptKeyProxyInterface.h"
#include "fdbserver/Knobs.h"
@ -138,6 +139,31 @@ struct DataDistributorSingleton : Singleton<DataDistributorInterface> {
}
};
struct ConsistencyScanSingleton : Singleton<ConsistencyScanInterface> {
ConsistencyScanSingleton(const Optional<ConsistencyScanInterface>& interface) : Singleton(interface) {}
Role getRole() const { return Role::CONSISTENCYSCAN; }
ProcessClass::ClusterRole getClusterRole() const { return ProcessClass::ConsistencyScan; }
void setInterfaceToDbInfo(ClusterControllerData* cc) const {
if (interface.present()) {
TraceEvent("CCCK_SetInf", cc->id).detail("Id", interface.get().id());
cc->db.setConsistencyScan(interface.get());
}
}
void halt(ClusterControllerData* cc, Optional<Standalone<StringRef>> pid) const {
if (interface.present()) {
cc->id_worker[pid].haltConsistencyScan =
brokenPromiseToNever(interface.get().haltConsistencyScan.getReply(HaltConsistencyScanRequest(cc->id)));
}
}
void recruit(ClusterControllerData* cc) const {
cc->lastRecruitTime = now();
cc->recruitConsistencyScan.set(true);
}
};
struct BlobManagerSingleton : Singleton<BlobManagerInterface> {
BlobManagerSingleton(const Optional<BlobManagerInterface>& interface) : Singleton(interface) {}
@ -248,6 +274,7 @@ ACTOR Future<Void> clusterWatchDatabase(ClusterControllerData* cluster,
dbInfo.ratekeeper = db->serverInfo->get().ratekeeper;
dbInfo.blobManager = db->serverInfo->get().blobManager;
dbInfo.encryptKeyProxy = db->serverInfo->get().encryptKeyProxy;
dbInfo.consistencyScan = db->serverInfo->get().consistencyScan;
dbInfo.latencyBandConfig = db->serverInfo->get().latencyBandConfig;
dbInfo.myLocality = db->serverInfo->get().myLocality;
dbInfo.client = ClientDBInfo();
@ -622,6 +649,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
// Try to find a new process for each singleton.
WorkerDetails newRKWorker = findNewProcessForSingleton(self, ProcessClass::Ratekeeper, id_used);
WorkerDetails newDDWorker = findNewProcessForSingleton(self, ProcessClass::DataDistributor, id_used);
WorkerDetails newCSWorker = findNewProcessForSingleton(self, ProcessClass::ConsistencyScan, id_used);
WorkerDetails newBMWorker;
if (self->db.blobGranulesEnabled.get()) {
@ -636,6 +664,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
// Find best possible fitnesses for each singleton.
auto bestFitnessForRK = findBestFitnessForSingleton(self, newRKWorker, ProcessClass::Ratekeeper);
auto bestFitnessForDD = findBestFitnessForSingleton(self, newDDWorker, ProcessClass::DataDistributor);
auto bestFitnessForCS = findBestFitnessForSingleton(self, newCSWorker, ProcessClass::ConsistencyScan);
ProcessClass::Fitness bestFitnessForBM;
if (self->db.blobGranulesEnabled.get()) {
@ -650,6 +679,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
auto& db = self->db.serverInfo->get();
auto rkSingleton = RatekeeperSingleton(db.ratekeeper);
auto ddSingleton = DataDistributorSingleton(db.distributor);
ConsistencyScanSingleton csSingleton(db.consistencyScan);
BlobManagerSingleton bmSingleton(db.blobManager);
EncryptKeyProxySingleton ekpSingleton(db.encryptKeyProxy);
@ -661,6 +691,9 @@ void checkBetterSingletons(ClusterControllerData* self) {
bool ddHealthy = isHealthySingleton<DataDistributorInterface>(
self, newDDWorker, ddSingleton, bestFitnessForDD, self->recruitingDistributorID);
bool csHealthy = isHealthySingleton<ConsistencyScanInterface>(
self, newCSWorker, csSingleton, bestFitnessForCS, self->recruitingConsistencyScanID);
bool bmHealthy = true;
if (self->db.blobGranulesEnabled.get()) {
bmHealthy = isHealthySingleton<BlobManagerInterface>(
@ -674,7 +707,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
}
// if any of the singletons are unhealthy (rerecruited or not stable), then do not
// consider any further re-recruitments
if (!(rkHealthy && ddHealthy && bmHealthy && ekpHealthy)) {
if (!(rkHealthy && ddHealthy && bmHealthy && ekpHealthy && csHealthy)) {
return;
}
@ -682,8 +715,10 @@ void checkBetterSingletons(ClusterControllerData* self) {
// check if we can colocate the singletons in a more optimal way
Optional<Standalone<StringRef>> currRKProcessId = rkSingleton.interface.get().locality.processId();
Optional<Standalone<StringRef>> currDDProcessId = ddSingleton.interface.get().locality.processId();
Optional<Standalone<StringRef>> currCSProcessId = csSingleton.interface.get().locality.processId();
Optional<Standalone<StringRef>> newRKProcessId = newRKWorker.interf.locality.processId();
Optional<Standalone<StringRef>> newDDProcessId = newDDWorker.interf.locality.processId();
Optional<Standalone<StringRef>> newCSProcessId = newCSWorker.interf.locality.processId();
Optional<Standalone<StringRef>> currBMProcessId, newBMProcessId;
if (self->db.blobGranulesEnabled.get()) {
@ -697,8 +732,8 @@ void checkBetterSingletons(ClusterControllerData* self) {
newEKPProcessId = newEKPWorker.interf.locality.processId();
}
std::vector<Optional<Standalone<StringRef>>> currPids = { currRKProcessId, currDDProcessId };
std::vector<Optional<Standalone<StringRef>>> newPids = { newRKProcessId, newDDProcessId };
std::vector<Optional<Standalone<StringRef>>> currPids = { currRKProcessId, currDDProcessId, currCSProcessId };
std::vector<Optional<Standalone<StringRef>>> newPids = { newRKProcessId, newDDProcessId, newCSProcessId };
if (self->db.blobGranulesEnabled.get()) {
currPids.emplace_back(currBMProcessId);
newPids.emplace_back(newBMProcessId);
@ -728,7 +763,8 @@ void checkBetterSingletons(ClusterControllerData* self) {
if (newColocMap[newRKProcessId] <= currColocMap[currRKProcessId] &&
newColocMap[newDDProcessId] <= currColocMap[currDDProcessId] &&
newColocMap[newBMProcessId] <= currColocMap[currBMProcessId] &&
newColocMap[newEKPProcessId] <= currColocMap[currEKPProcessId]) {
newColocMap[newEKPProcessId] <= currColocMap[currEKPProcessId] &&
newColocMap[newCSProcessId] <= currColocMap[currCSProcessId]) {
// rerecruit the singleton for which we have found a better process, if any
if (newColocMap[newRKProcessId] < currColocMap[currRKProcessId]) {
rkSingleton.recruit(self);
@ -738,6 +774,8 @@ void checkBetterSingletons(ClusterControllerData* self) {
bmSingleton.recruit(self);
} else if (SERVER_KNOBS->ENABLE_ENCRYPTION && newColocMap[newEKPProcessId] < currColocMap[currEKPProcessId]) {
ekpSingleton.recruit(self);
} else if (newColocMap[newCSProcessId] < currColocMap[currCSProcessId]) {
csSingleton.recruit(self);
}
}
}
@ -1302,6 +1340,13 @@ ACTOR Future<Void> registerWorker(RegisterWorkerRequest req,
self, w, currSingleton, registeringSingleton, self->recruitingEncryptKeyProxyID);
}
if (req.consistencyScanInterf.present()) {
auto currSingleton = ConsistencyScanSingleton(self->db.serverInfo->get().consistencyScan);
auto registeringSingleton = ConsistencyScanSingleton(req.consistencyScanInterf);
haltRegisteringOrCurrentSingleton<ConsistencyScanInterface>(
self, w, currSingleton, registeringSingleton, self->recruitingConsistencyScanID);
}
// Notify the worker to register again with new process class/exclusive property
if (!req.reply.isSet() && newPriorityInfo != req.priorityInfo) {
req.reply.send(RegisterWorkerReply(newProcessClass, newPriorityInfo));
@ -2163,6 +2208,101 @@ ACTOR Future<Void> monitorRatekeeper(ClusterControllerData* self) {
}
}
ACTOR Future<Void> startConsistencyScan(ClusterControllerData* self) {
wait(delay(0.0)); // If master fails at the same time, give it a chance to clear master PID.
TraceEvent("CCStartConsistencyScan", self->id).log();
loop {
try {
state bool no_consistencyScan = !self->db.serverInfo->get().consistencyScan.present();
while (!self->masterProcessId.present() ||
self->masterProcessId != self->db.serverInfo->get().master.locality.processId() ||
self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) {
wait(self->db.serverInfo->onChange() || delay(SERVER_KNOBS->WAIT_FOR_GOOD_RECRUITMENT_DELAY));
}
if (no_consistencyScan && self->db.serverInfo->get().consistencyScan.present()) {
// Existing consistencyScan registers while waiting, so skip.
return Void();
}
std::map<Optional<Standalone<StringRef>>, int> id_used = self->getUsedIds();
WorkerFitnessInfo csWorker = self->getWorkerForRoleInDatacenter(self->clusterControllerDcId,
ProcessClass::ConsistencyScan,
ProcessClass::NeverAssign,
self->db.config,
id_used);
InitializeConsistencyScanRequest req(deterministicRandom()->randomUniqueID());
state WorkerDetails worker = csWorker.worker;
if (self->onMasterIsBetter(worker, ProcessClass::ConsistencyScan)) {
worker = self->id_worker[self->masterProcessId.get()].details;
}
self->recruitingConsistencyScanID = req.reqId;
TraceEvent("CCRecruitConsistencyScan", self->id)
.detail("Addr", worker.interf.address())
.detail("CSID", req.reqId);
ErrorOr<ConsistencyScanInterface> interf = wait(worker.interf.consistencyScan.getReplyUnlessFailedFor(
req, SERVER_KNOBS->WAIT_FOR_CONSISTENCYSCAN_JOIN_DELAY, 0));
if (interf.present()) {
self->recruitConsistencyScan.set(false);
self->recruitingConsistencyScanID = interf.get().id();
const auto& consistencyScan = self->db.serverInfo->get().consistencyScan;
TraceEvent("CCConsistencyScanRecruited", self->id)
.detail("Addr", worker.interf.address())
.detail("CKID", interf.get().id());
if (consistencyScan.present() && consistencyScan.get().id() != interf.get().id() &&
self->id_worker.count(consistencyScan.get().locality.processId())) {
TraceEvent("CCHaltConsistencyScanAfterRecruit", self->id)
.detail("CKID", consistencyScan.get().id())
.detail("DcID", printable(self->clusterControllerDcId));
ConsistencyScanSingleton(consistencyScan).halt(self, consistencyScan.get().locality.processId());
}
if (!consistencyScan.present() || consistencyScan.get().id() != interf.get().id()) {
self->db.setConsistencyScan(interf.get());
}
checkOutstandingRequests(self);
return Void();
} else {
TraceEvent("CCConsistencyScanRecruitEmpty", self->id).log();
}
} catch (Error& e) {
TraceEvent("CCConsistencyScanRecruitError", self->id).error(e);
if (e.code() != error_code_no_more_servers) {
throw;
}
}
wait(lowPriorityDelay(SERVER_KNOBS->ATTEMPT_RECRUITMENT_DELAY));
}
}
ACTOR Future<Void> monitorConsistencyScan(ClusterControllerData* self) {
while (self->db.serverInfo->get().recoveryState < RecoveryState::ACCEPTING_COMMITS) {
TraceEvent("CCMonitorConsistencyScanWaitingForRecovery", self->id).log();
wait(self->db.serverInfo->onChange());
}
TraceEvent("CCMonitorConsistencyScan", self->id).log();
loop {
if (self->db.serverInfo->get().consistencyScan.present() && !self->recruitConsistencyScan.get()) {
state Future<Void> wfClient =
waitFailureClient(self->db.serverInfo->get().consistencyScan.get().waitFailure,
SERVER_KNOBS->CONSISTENCYSCAN_FAILURE_TIME);
choose {
when(wait(wfClient)) {
TraceEvent("CCMonitorConsistencyScanDied", self->id)
.detail("CKID", self->db.serverInfo->get().consistencyScan.get().id());
self->db.clearInterf(ProcessClass::ConsistencyScanClass);
}
when(wait(self->recruitConsistencyScan.onChange())) {}
}
} else {
TraceEvent("CCMonitorConsistencyScanStarting", self->id).log();
wait(startConsistencyScan(self));
}
}
}
ACTOR Future<Void> startEncryptKeyProxy(ClusterControllerData* self, double waitTime) {
// If master fails at the same time, give it a chance to clear master PID.
// Also wait to avoid too many consecutive recruits in a small time window.
@ -2580,6 +2720,7 @@ ACTOR Future<Void> clusterControllerCore(ClusterControllerFullInterface interf,
self.addActor.send(monitorRatekeeper(&self));
self.addActor.send(monitorBlobManager(&self));
self.addActor.send(watchBlobGranulesConfigKey(&self));
self.addActor.send(monitorConsistencyScan(&self));
self.addActor.send(dbInfoUpdater(&self));
self.addActor.send(traceCounters("ClusterControllerMetrics",
self.id,

File diff suppressed because it is too large Load Diff

View File

@ -34,6 +34,7 @@
#include "fdbserver/ClusterRecovery.actor.h"
#include "fdbserver/CoordinationInterface.h"
#include "fdbserver/DataDistribution.actor.h"
#include "fdbclient/ConsistencyScanInterface.h"
#include "flow/UnitTest.h"
#include "fdbserver/QuietDatabase.h"
#include "fdbserver/RecoveryState.h"
@ -809,6 +810,10 @@ ACTOR static Future<JsonBuilderObject> processStatusFetcher(
roles.addRole("blob_manager", db->get().blobManager.get());
}
if (db->get().consistencyScan.present()) {
roles.addRole("consistency_scan", db->get().consistencyScan.get());
}
if (SERVER_KNOBS->ENABLE_ENCRYPTION && db->get().encryptKeyProxy.present()) {
roles.addRole("encrypt_key_proxy", db->get().encryptKeyProxy.get());
}
@ -2871,6 +2876,26 @@ ACTOR Future<JsonBuilderObject> storageWigglerStatsFetcher(Optional<DataDistribu
}
return res;
}
// read consistencyScanInfo through Read-only tx
ACTOR Future<Optional<Value>> consistencyScanInfoFetcher(Database cx) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state Optional<Value> val;
loop {
try {
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
wait(store(val, ConsistencyScanInfo::getInfo(tr)));
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
TraceEvent("ConsistencyScanInfoFetcher").log();
return val.get();
}
// constructs the cluster section of the json status output
ACTOR Future<StatusReply> clusterGetStatus(
Reference<AsyncVar<ServerDBInfo>> db,
@ -2890,6 +2915,7 @@ ACTOR Future<StatusReply> clusterGetStatus(
state WorkerDetails ccWorker; // Cluster-Controller worker
state WorkerDetails ddWorker; // DataDistributor worker
state WorkerDetails rkWorker; // Ratekeeper worker
state WorkerDetails csWorker; // ConsistencyScan worker
try {
// Get the master Worker interface
@ -2936,6 +2962,19 @@ ACTOR Future<StatusReply> clusterGetStatus(
rkWorker = _rkWorker.get();
}
// Get the ConsistencyScan worker interface
Optional<WorkerDetails> _csWorker;
if (db->get().consistencyScan.present()) {
_csWorker = getWorker(workers, db->get().consistencyScan.get().address());
}
if (!db->get().consistencyScan.present() || !_csWorker.present()) {
messages.push_back(JsonString::makeMessage("unreachable_consistencyScan_worker",
"Unable to locate the consistencyScan worker."));
} else {
csWorker = _csWorker.get();
}
// Get latest events for various event types from ALL workers
// WorkerEvents is a map of worker's NetworkAddress to its event string
// The pair represents worker responses and a set of worker NetworkAddress strings which did not respond.
@ -3350,6 +3389,26 @@ ACTOR Future<StatusReply> clusterGetStatus(
messages.push_back(clientIssueMessage);
}
// Fetch Consistency Scan Information
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state Optional<Value> val;
loop {
try {
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
wait(store(val, ConsistencyScanInfo::getInfo(tr)));
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
if (val.present()) {
ConsistencyScanInfo consistencyScanInfo =
ObjectReader::fromStringRef<ConsistencyScanInfo>(val.get(), IncludeVersion());
TraceEvent("StatusConsistencyScanGotVal").log();
statusObj["consistency_scan_info"] = consistencyScanInfo.toJSON();
}
// Create the status_incomplete message if there were any reasons that the status is incomplete.
if (!status_incomplete_reasons.empty()) {
JsonBuilderObject incomplete_message =

View File

@ -51,6 +51,7 @@ struct WorkerInfo : NonCopyable {
Future<Void> haltDistributor;
Future<Void> haltBlobManager;
Future<Void> haltEncryptKeyProxy;
Future<Void> haltConsistencyScan;
Standalone<VectorRef<StringRef>> issues;
WorkerInfo()
@ -73,7 +74,7 @@ struct WorkerInfo : NonCopyable {
: watcher(std::move(r.watcher)), reply(std::move(r.reply)), gen(r.gen), reboots(r.reboots),
initialClass(r.initialClass), priorityInfo(r.priorityInfo), details(std::move(r.details)),
haltRatekeeper(r.haltRatekeeper), haltDistributor(r.haltDistributor), haltBlobManager(r.haltBlobManager),
haltEncryptKeyProxy(r.haltEncryptKeyProxy), issues(r.issues) {}
haltEncryptKeyProxy(r.haltEncryptKeyProxy), haltConsistencyScan(r.haltConsistencyScan), issues(r.issues) {}
void operator=(WorkerInfo&& r) noexcept {
watcher = std::move(r.watcher);
reply = std::move(r.reply);
@ -188,6 +189,14 @@ public:
serverInfo->set(newInfo);
}
void setConsistencyScan(const ConsistencyScanInterface& interf) {
auto newInfo = serverInfo->get();
newInfo.id = deterministicRandom()->randomUniqueID();
newInfo.infoGeneration = ++dbInfoCount;
newInfo.consistencyScan = interf;
serverInfo->set(newInfo);
}
void clearInterf(ProcessClass::ClassType t) {
auto newInfo = serverInfo->get();
newInfo.id = deterministicRandom()->randomUniqueID();
@ -200,6 +209,8 @@ public:
newInfo.blobManager = Optional<BlobManagerInterface>();
} else if (t == ProcessClass::EncryptKeyProxyClass) {
newInfo.encryptKeyProxy = Optional<EncryptKeyProxyInterface>();
} else if (t == ProcessClass::ConsistencyScanClass) {
newInfo.consistencyScan = Optional<ConsistencyScanInterface>();
}
serverInfo->set(newInfo);
}
@ -294,7 +305,9 @@ public:
(db.serverInfo->get().blobManager.present() &&
db.serverInfo->get().blobManager.get().locality.processId() == processId) ||
(db.serverInfo->get().encryptKeyProxy.present() &&
db.serverInfo->get().encryptKeyProxy.get().locality.processId() == processId);
db.serverInfo->get().encryptKeyProxy.get().locality.processId() == processId) ||
(db.serverInfo->get().consistencyScan.present() &&
db.serverInfo->get().consistencyScan.get().locality.processId() == processId);
}
WorkerDetails getStorageWorker(RecruitStorageRequest const& req) {
@ -2880,7 +2893,8 @@ public:
ASSERT(masterProcessId.present());
const auto& pid = worker.interf.locality.processId();
if ((role != ProcessClass::DataDistributor && role != ProcessClass::Ratekeeper &&
role != ProcessClass::BlobManager && role != ProcessClass::EncryptKeyProxy) ||
role != ProcessClass::BlobManager && role != ProcessClass::EncryptKeyProxy &&
role != ProcessClass::ConsistencyScan) ||
pid == masterProcessId.get()) {
return false;
}
@ -3263,6 +3277,8 @@ public:
Optional<UID> recruitingBlobManagerID;
AsyncVar<bool> recruitEncryptKeyProxy;
Optional<UID> recruitingEncryptKeyProxyID;
AsyncVar<bool> recruitConsistencyScan;
Optional<UID> recruitingConsistencyScanID;
// Stores the health information from a particular worker's perspective.
struct WorkerHealth {
@ -3300,7 +3316,7 @@ public:
goodRecruitmentTime(Never()), goodRemoteRecruitmentTime(Never()), datacenterVersionDifference(0),
versionDifferenceUpdated(false), remoteDCMonitorStarted(false), remoteTransactionSystemDegraded(false),
recruitDistributor(false), recruitRatekeeper(false), recruitBlobManager(false), recruitEncryptKeyProxy(false),
clusterControllerMetrics("ClusterController", id.toString()),
recruitConsistencyScan(false), clusterControllerMetrics("ClusterController", id.toString()),
openDatabaseRequests("OpenDatabaseRequests", clusterControllerMetrics),
registerWorkerRequests("RegisterWorkerRequests", clusterControllerMetrics),
getWorkersRequests("GetWorkersRequests", clusterControllerMetrics),

View File

@ -31,6 +31,7 @@
#include "fdbserver/LogSystemConfig.h"
#include "fdbserver/RatekeeperInterface.h"
#include "fdbserver/BlobManagerInterface.h"
#include "fdbclient/ConsistencyScanInterface.h"
#include "fdbserver/RecoveryState.h"
#include "fdbserver/LatencyBandConfig.h"
#include "fdbserver/WorkerInterface.actor.h"
@ -50,6 +51,7 @@ struct ServerDBInfo {
Optional<RatekeeperInterface> ratekeeper;
Optional<BlobManagerInterface> blobManager;
Optional<EncryptKeyProxyInterface> encryptKeyProxy;
Optional<ConsistencyScanInterface> consistencyScan;
std::vector<ResolverInterface> resolvers;
DBRecoveryCount
recoveryCount; // A recovery count from DBCoreState. A successful cluster recovery increments it twice;
@ -83,6 +85,7 @@ struct ServerDBInfo {
ratekeeper,
blobManager,
encryptKeyProxy,
consistencyScan,
resolvers,
recoveryCount,
recoveryState,

View File

@ -31,6 +31,7 @@
#include "fdbserver/MasterInterface.h"
#include "fdbserver/TLogInterface.h"
#include "fdbserver/RatekeeperInterface.h"
#include "fdbclient/ConsistencyScanInterface.h"
#include "fdbserver/BlobManagerInterface.h"
#include "fdbserver/ResolverInterface.h"
#include "fdbclient/BlobWorkerInterface.h"
@ -57,6 +58,7 @@ struct WorkerInterface {
RequestStream<struct InitializeRatekeeperRequest> ratekeeper;
RequestStream<struct InitializeBlobManagerRequest> blobManager;
RequestStream<struct InitializeBlobWorkerRequest> blobWorker;
RequestStream<struct InitializeConsistencyScanRequest> consistencyScan;
RequestStream<struct InitializeResolverRequest> resolver;
RequestStream<struct InitializeStorageRequest> storage;
RequestStream<struct InitializeLogRouterRequest> logRouter;
@ -112,6 +114,7 @@ struct WorkerInterface {
ratekeeper,
blobManager,
blobWorker,
consistencyScan,
resolver,
storage,
logRouter,
@ -428,6 +431,7 @@ struct RegisterWorkerRequest {
Optional<RatekeeperInterface> ratekeeperInterf;
Optional<BlobManagerInterface> blobManagerInterf;
Optional<EncryptKeyProxyInterface> encryptKeyProxyInterf;
Optional<ConsistencyScanInterface> consistencyScanInterf;
Standalone<VectorRef<StringRef>> issues;
std::vector<NetworkAddress> incompatiblePeers;
ReplyPromise<RegisterWorkerReply> reply;
@ -449,6 +453,7 @@ struct RegisterWorkerRequest {
Optional<RatekeeperInterface> rkInterf,
Optional<BlobManagerInterface> bmInterf,
Optional<EncryptKeyProxyInterface> ekpInterf,
Optional<ConsistencyScanInterface> csInterf,
bool degraded,
Optional<Version> lastSeenKnobVersion,
Optional<ConfigClassSet> knobConfigClassSet,
@ -456,9 +461,9 @@ struct RegisterWorkerRequest {
ConfigBroadcastInterface configBroadcastInterface)
: wi(wi), initialClass(initialClass), processClass(processClass), priorityInfo(priorityInfo),
generation(generation), distributorInterf(ddInterf), ratekeeperInterf(rkInterf), blobManagerInterf(bmInterf),
encryptKeyProxyInterf(ekpInterf), degraded(degraded), lastSeenKnobVersion(lastSeenKnobVersion),
knobConfigClassSet(knobConfigClassSet), requestDbInfo(false), recoveredDiskFiles(recoveredDiskFiles),
configBroadcastInterface(configBroadcastInterface) {}
encryptKeyProxyInterf(ekpInterf), consistencyScanInterf(csInterf), degraded(degraded),
lastSeenKnobVersion(lastSeenKnobVersion), knobConfigClassSet(knobConfigClassSet), requestDbInfo(false),
recoveredDiskFiles(recoveredDiskFiles), configBroadcastInterface(configBroadcastInterface) {}
template <class Ar>
void serialize(Ar& ar) {
@ -472,6 +477,7 @@ struct RegisterWorkerRequest {
ratekeeperInterf,
blobManagerInterf,
encryptKeyProxyInterf,
consistencyScanInterf,
issues,
incompatiblePeers,
reply,
@ -728,6 +734,19 @@ struct InitializeRatekeeperRequest {
}
};
struct InitializeConsistencyScanRequest {
constexpr static FileIdentifier file_identifier = 3104275;
UID reqId;
ReplyPromise<ConsistencyScanInterface> reply;
InitializeConsistencyScanRequest() {}
explicit InitializeConsistencyScanRequest(UID uid) : reqId(uid) {}
template <class Ar>
void serialize(Ar& ar) {
serializer(ar, reqId, reply);
}
};
struct InitializeBlobManagerRequest {
constexpr static FileIdentifier file_identifier = 2567474;
UID reqId;
@ -990,6 +1009,7 @@ struct Role {
static const Role COORDINATOR;
static const Role BACKUP;
static const Role ENCRYPT_KEY_PROXY;
static const Role CONSISTENCYSCAN;
std::string roleName;
std::string abbreviation;
@ -1027,6 +1047,8 @@ struct Role {
return BACKUP;
case ProcessClass::EncryptKeyProxy:
return ENCRYPT_KEY_PROXY;
case ProcessClass::ConsistencyScan:
return CONSISTENCYSCAN;
case ProcessClass::Worker:
return WORKER;
case ProcessClass::NoRole:
@ -1148,6 +1170,7 @@ ACTOR Future<Void> logRouter(TLogInterface interf,
Reference<AsyncVar<ServerDBInfo> const> db);
ACTOR Future<Void> dataDistributor(DataDistributorInterface ddi, Reference<AsyncVar<ServerDBInfo> const> db);
ACTOR Future<Void> ratekeeper(RatekeeperInterface rki, Reference<AsyncVar<ServerDBInfo> const> db);
ACTOR Future<Void> consistencyScan(ConsistencyScanInterface csInterf, Reference<AsyncVar<ServerDBInfo> const> dbInfo);
ACTOR Future<Void> blobManager(BlobManagerInterface bmi, Reference<AsyncVar<ServerDBInfo> const> db, int64_t epoch);
ACTOR Future<Void> storageCacheServer(StorageServerInterface interf,
uint16_t id,

View File

@ -4843,6 +4843,11 @@ ACTOR Future<Void> getKeyValuesStreamQ(StorageServer* data, GetKeyValuesStreamRe
!data->isTss() && !data->isSSWithTSSPair())
? 1
: CLIENT_KNOBS->REPLY_BYTE_LIMIT;
TraceEvent(SevDebug, "SSGetKeyValueStreamLimits")
.detail("ByteLimit", byteLimit)
.detail("ReqLimit", req.limit)
.detail("Begin", begin.printable())
.detail("End", end.printable());
GetKeyValuesReply _r = wait(readRange(data,
version,
KeyRangeRef(begin, end),

View File

@ -562,6 +562,7 @@ ACTOR Future<Void> registrationClient(
Reference<AsyncVar<Optional<RatekeeperInterface>> const> rkInterf,
Reference<AsyncVar<Optional<std::pair<int64_t, BlobManagerInterface>>> const> bmInterf,
Reference<AsyncVar<Optional<EncryptKeyProxyInterface>> const> ekpInterf,
Reference<AsyncVar<Optional<ConsistencyScanInterface>> const> csInterf,
Reference<AsyncVar<bool> const> degraded,
Reference<IClusterConnectionRecord> connRecord,
Reference<AsyncVar<std::set<std::string>> const> issues,
@ -602,6 +603,7 @@ ACTOR Future<Void> registrationClient(
rkInterf->get(),
bmInterf->get().present() ? bmInterf->get().get().second : Optional<BlobManagerInterface>(),
ekpInterf->get(),
csInterf->get(),
degraded->get(),
localConfig.isValid() ? localConfig->lastSeenVersion() : Optional<Version>(),
localConfig.isValid() ? localConfig->configClassSet() : Optional<ConfigClassSet>(),
@ -670,6 +672,7 @@ ACTOR Future<Void> registrationClient(
when(wait(ccInterface->onChange())) { break; }
when(wait(ddInterf->onChange())) { break; }
when(wait(rkInterf->onChange())) { break; }
when(wait(csInterf->onChange())) { break; }
when(wait(bmInterf->onChange())) { break; }
when(wait(ekpInterf->onChange())) { break; }
when(wait(degraded->onChange())) { break; }
@ -696,6 +699,10 @@ bool addressInDbAndPrimaryDc(const NetworkAddress& address, Reference<AsyncVar<S
return true;
}
if (dbi.consistencyScan.present() && dbi.consistencyScan.get().address() == address) {
return true;
}
if (dbi.blobManager.present() && dbi.blobManager.get().address() == address) {
return true;
}
@ -1620,6 +1627,8 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
state UID lastBMRecruitRequestId;
state Reference<AsyncVar<Optional<EncryptKeyProxyInterface>>> ekpInterf(
new AsyncVar<Optional<EncryptKeyProxyInterface>>());
state Reference<AsyncVar<Optional<ConsistencyScanInterface>>> csInterf(
new AsyncVar<Optional<ConsistencyScanInterface>>());
state Future<Void> handleErrors = workerHandleErrors(errors.getFuture()); // Needs to be stopped last
state ActorCollection errorForwarders(false);
state Future<Void> loggingTrigger = Void();
@ -1942,6 +1951,7 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
rkInterf,
bmEpochAndInterf,
ekpInterf,
csInterf,
degraded,
connRecord,
issues,
@ -2136,6 +2146,31 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
TraceEvent("Ratekeeper_InitRequest", req.reqId).detail("RatekeeperId", recruited.id());
req.reply.send(recruited);
}
when(InitializeConsistencyScanRequest req = waitNext(interf.consistencyScan.getFuture())) {
LocalLineage _;
getCurrentLineage()->modify(&RoleLineage::role) = ProcessClass::ClusterRole::ConsistencyScan;
ConsistencyScanInterface recruited(locality, req.reqId);
recruited.initEndpoints();
if (csInterf->get().present()) {
recruited = csInterf->get().get();
CODE_PROBE(true, "Recovered while already a consistencyscan");
} else {
startRole(Role::CONSISTENCYSCAN, recruited.id(), interf.id());
DUMPTOKEN(recruited.waitFailure);
DUMPTOKEN(recruited.haltConsistencyScan);
Future<Void> consistencyScanProcess = consistencyScan(recruited, dbInfo);
errorForwarders.add(forwardError(
errors,
Role::CONSISTENCYSCAN,
recruited.id(),
setWhenDoneOrError(consistencyScanProcess, csInterf, Optional<ConsistencyScanInterface>())));
csInterf->set(Optional<ConsistencyScanInterface>(recruited));
}
TraceEvent("ConsistencyScanReceived", req.reqId).detail("ConsistencyScanId", recruited.id());
req.reply.send(recruited);
}
when(InitializeBlobManagerRequest req = waitNext(interf.blobManager.getFuture())) {
LocalLineage _;
getCurrentLineage()->modify(&RoleLineage::role) = ProcessClass::ClusterRole::BlobManager;
@ -3459,3 +3494,4 @@ const Role Role::STORAGE_CACHE("StorageCache", "SC");
const Role Role::COORDINATOR("Coordinator", "CD");
const Role Role::BACKUP("Backup", "BK");
const Role Role::ENCRYPT_KEY_PROXY("EncryptKeyProxy", "EP");
const Role Role::CONSISTENCYSCAN("ConsistencyScan", "CS");

View File

@ -321,19 +321,41 @@ struct ConsistencyCheckWorkload : TestWorkload {
// Get a list of key servers; verify that the TLogs and master all agree about who the key servers are
state Promise<std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>>> keyServerPromise;
bool keyServerResult = wait(self->getKeyServers(cx, self, keyServerPromise, keyServersKeys));
bool keyServerResult =
wait(getKeyServers(cx, keyServerPromise, keyServersKeys, self->performQuiescentChecks));
if (keyServerResult) {
state std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>> keyServers =
keyServerPromise.getFuture().get();
// Get the locations of all the shards in the database
state Promise<Standalone<VectorRef<KeyValueRef>>> keyLocationPromise;
bool keyLocationResult = wait(self->getKeyLocations(cx, keyServers, self, keyLocationPromise));
bool keyLocationResult =
wait(getKeyLocations(cx, keyServers, keyLocationPromise, self->performQuiescentChecks));
if (keyLocationResult) {
state Standalone<VectorRef<KeyValueRef>> keyLocations = keyLocationPromise.getFuture().get();
// Check that each shard has the same data on all storage servers that it resides on
wait(::success(self->checkDataConsistency(cx, keyLocations, configuration, tssMapping, self)));
wait(::success(
checkDataConsistency(cx,
keyLocations,
configuration,
tssMapping,
self->performQuiescentChecks,
self->performTSSCheck,
self->firstClient,
self->failureIsError,
self->clientId,
self->clientCount,
self->distributed,
self->shuffleShards,
self->shardSampleFactor,
self->sharedRandomNumber,
self->repetitions,
&(self->bytesReadInPreviousRound),
true,
self->rateLimitMax,
CLIENT_KNOBS->CONSISTENCY_CHECK_ONE_ROUND_TARGET_COMPLETION_TIME,
KeyRef())));
// Cache consistency check
if (self->performCacheCheck)
@ -343,11 +365,12 @@ struct ConsistencyCheckWorkload : TestWorkload {
} catch (Error& e) {
if (e.code() == error_code_transaction_too_old || e.code() == error_code_future_version ||
e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed ||
e.code() == error_code_process_behind)
e.code() == error_code_process_behind || e.code() == error_code_actor_cancelled) {
TraceEvent("ConsistencyCheck_Retry")
.error(e); // FIXME: consistency check does not retry in this case
else
} else {
self->testFailure(format("Error %d - %s", e.code(), e.name()));
}
}
}
@ -526,7 +549,7 @@ struct ConsistencyCheckWorkload : TestWorkload {
lastSampleKey = lastStartSampleKey;
// Get the min version of the storage servers
Version version = wait(self->getVersion(cx, self));
Version version = wait(getVersion(cx));
state GetKeyValuesRequest req;
req.begin = begin;
@ -744,7 +767,7 @@ struct ConsistencyCheckWorkload : TestWorkload {
bool removePrefix) {
// get shards paired with corresponding storage servers
state Promise<std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>>> keyServerPromise;
bool keyServerResult = wait(self->getKeyServers(cx, self, keyServerPromise, range));
bool keyServerResult = wait(getKeyServers(cx, keyServerPromise, range, self->performQuiescentChecks));
if (!keyServerResult)
return false;
state std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>> shards =
@ -762,7 +785,7 @@ struct ConsistencyCheckWorkload : TestWorkload {
for (i = 0; i < shards.size(); i++) {
while (beginKey < std::min<KeyRef>(shards[i].first.end, endKey)) {
try {
Version version = wait(self->getVersion(cx, self));
Version version = wait(getVersion(cx));
GetKeyValuesRequest req;
req.begin = firstGreaterOrEqual(beginKey);
@ -846,879 +869,12 @@ struct ConsistencyCheckWorkload : TestWorkload {
return true;
}
// Gets a version at which to read from the storage servers
ACTOR Future<Version> getVersion(Database cx, ConsistencyCheckWorkload* self) {
loop {
state Transaction tr(cx);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
Version version = wait(tr.getReadVersion());
return version;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// Get a list of storage servers(persisting keys within range "kr") from the master and compares them with the
// TLogs. If this is a quiescent check, then each commit proxy needs to respond, otherwise only one needs to
// respond. Returns false if there is a failure (in this case, keyServersPromise will never be set)
ACTOR Future<bool> getKeyServers(
Database cx,
ConsistencyCheckWorkload* self,
Promise<std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>>> keyServersPromise,
KeyRangeRef kr) {
state std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>> keyServers;
// Try getting key server locations from the master proxies
state std::vector<Future<ErrorOr<GetKeyServerLocationsReply>>> keyServerLocationFutures;
state Key begin = kr.begin;
state Key end = kr.end;
state int limitKeyServers = BUGGIFY ? 1 : 100;
state Span span(SpanContext(deterministicRandom()->randomUniqueID(), deterministicRandom()->randomUInt64()),
"WL:ConsistencyCheck"_loc);
while (begin < end) {
state Reference<CommitProxyInfo> commitProxyInfo =
wait(cx->getCommitProxiesFuture(UseProvisionalProxies::False));
keyServerLocationFutures.clear();
for (int i = 0; i < commitProxyInfo->size(); i++)
keyServerLocationFutures.push_back(
commitProxyInfo->get(i, &CommitProxyInterface::getKeyServersLocations)
.getReplyUnlessFailedFor(
GetKeyServerLocationsRequest(
span.context, TenantInfo(), begin, end, limitKeyServers, false, latestVersion, Arena()),
2,
0));
state bool keyServersInsertedForThisIteration = false;
choose {
when(wait(waitForAll(keyServerLocationFutures))) {
// Read the key server location results
for (int i = 0; i < keyServerLocationFutures.size(); i++) {
ErrorOr<GetKeyServerLocationsReply> shards = keyServerLocationFutures[i].get();
// If performing quiescent check, then all master proxies should be reachable. Otherwise, only
// one needs to be reachable
if (self->performQuiescentChecks && !shards.present()) {
TraceEvent("ConsistencyCheck_CommitProxyUnavailable")
.detail("CommitProxyID", commitProxyInfo->getId(i));
self->testFailure("Commit proxy unavailable");
return false;
}
// Get the list of shards if one was returned. If not doing a quiescent check, we can break if
// it is. If we are doing a quiescent check, then we only need to do this for the first shard.
if (shards.present() && !keyServersInsertedForThisIteration) {
keyServers.insert(
keyServers.end(), shards.get().results.begin(), shards.get().results.end());
keyServersInsertedForThisIteration = true;
begin = shards.get().results.back().first.end;
if (!self->performQuiescentChecks)
break;
}
} // End of For
}
when(wait(cx->onProxiesChanged())) {}
} // End of choose
if (!keyServersInsertedForThisIteration) // Retry the entire workflow
wait(delay(1.0));
} // End of while
keyServersPromise.send(keyServers);
return true;
}
// Retrieves the locations of all shards in the database
// Returns false if there is a failure (in this case, keyLocationPromise will never be set)
ACTOR Future<bool> getKeyLocations(Database cx,
std::vector<std::pair<KeyRange, std::vector<StorageServerInterface>>> shards,
ConsistencyCheckWorkload* self,
Promise<Standalone<VectorRef<KeyValueRef>>> keyLocationPromise) {
state Standalone<VectorRef<KeyValueRef>> keyLocations;
state Key beginKey = allKeys.begin.withPrefix(keyServersPrefix);
state Key endKey = allKeys.end.withPrefix(keyServersPrefix);
state int i = 0;
state Transaction onErrorTr(cx); // This transaction exists only to access onError and its backoff behavior
// If the responses are too big, we may use multiple requests to get the key locations. Each request begins
// where the last left off
for (; i < shards.size(); i++) {
while (beginKey < std::min<KeyRef>(shards[i].first.end, endKey)) {
try {
Version version = wait(self->getVersion(cx, self));
GetKeyValuesRequest req;
req.begin = firstGreaterOrEqual(beginKey);
req.end = firstGreaterOrEqual(std::min<KeyRef>(shards[i].first.end, endKey));
req.limit = SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT;
req.limitBytes = SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES;
req.version = version;
req.tags = TagSet();
// Try getting the shard locations from the key servers
state std::vector<Future<ErrorOr<GetKeyValuesReply>>> keyValueFutures;
for (const auto& kv : shards[i].second) {
resetReply(req);
keyValueFutures.push_back(kv.getKeyValues.getReplyUnlessFailedFor(req, 2, 0));
}
wait(waitForAll(keyValueFutures));
int firstValidStorageServer = -1;
// Read the shard location results
for (int j = 0; j < keyValueFutures.size(); j++) {
ErrorOr<GetKeyValuesReply> reply = keyValueFutures[j].get();
if (!reply.present() || reply.get().error.present()) {
// If the storage server didn't reply in a quiescent database, then the check fails
if (self->performQuiescentChecks) {
TraceEvent("ConsistencyCheck_KeyServerUnavailable")
.detail("StorageServer", shards[i].second[j].id().toString().c_str());
self->testFailure("Key server unavailable");
return false;
}
// If no storage servers replied, then throw all_alternatives_failed to force a retry
else if (firstValidStorageServer < 0 && j == keyValueFutures.size() - 1)
throw all_alternatives_failed();
}
// If this is the first storage server, store the locations to send back to the caller
else if (firstValidStorageServer < 0) {
firstValidStorageServer = j;
// Otherwise, compare the data to the results from the first storage server. If they are
// different, then the check fails
} else if (reply.get().data != keyValueFutures[firstValidStorageServer].get().get().data ||
reply.get().more != keyValueFutures[firstValidStorageServer].get().get().more) {
TraceEvent("ConsistencyCheck_InconsistentKeyServers")
.detail("StorageServer1", shards[i].second[firstValidStorageServer].id())
.detail("StorageServer2", shards[i].second[j].id());
self->testFailure("Key servers inconsistent", true);
return false;
}
}
auto keyValueResponse = keyValueFutures[firstValidStorageServer].get().get();
RangeResult currentLocations = krmDecodeRanges(
keyServersPrefix,
KeyRangeRef(beginKey.removePrefix(keyServersPrefix),
std::min<KeyRef>(shards[i].first.end, endKey).removePrefix(keyServersPrefix)),
RangeResultRef(keyValueResponse.data, keyValueResponse.more));
if (keyValueResponse.data.size() && beginKey == keyValueResponse.data[0].key) {
keyLocations.push_back_deep(keyLocations.arena(), currentLocations[0]);
}
if (currentLocations.size() > 2) {
keyLocations.append_deep(
keyLocations.arena(), &currentLocations[1], currentLocations.size() - 2);
}
// Next iteration should pick up where we left off
ASSERT(currentLocations.size() > 1);
if (!keyValueResponse.more) {
beginKey = shards[i].first.end;
} else {
beginKey = keyValueResponse.data.end()[-1].key;
}
// If this is the last iteration, then push the allKeys.end KV pair
if (beginKey >= endKey)
keyLocations.push_back_deep(keyLocations.arena(), currentLocations.end()[-1]);
} catch (Error& e) {
state Error err = e;
wait(onErrorTr.onError(err));
TraceEvent("ConsistencyCheck_RetryGetKeyLocations").error(err);
}
}
}
keyLocationPromise.send(keyLocations);
return true;
}
// Retrieves a vector of the storage servers' estimates for the size of a particular shard
// If a storage server can't be reached, its estimate will be -1
// If there is an error, then the returned vector will have 0 size
ACTOR Future<std::vector<int64_t>> getStorageSizeEstimate(std::vector<StorageServerInterface> storageServers,
KeyRangeRef shard) {
state std::vector<int64_t> estimatedBytes;
state WaitMetricsRequest req;
req.keys = shard;
req.max.bytes = -1;
req.min.bytes = 0;
state std::vector<Future<ErrorOr<StorageMetrics>>> metricFutures;
try {
// Check the size of the shard on each storage server
for (int i = 0; i < storageServers.size(); i++) {
resetReply(req);
metricFutures.push_back(storageServers[i].waitMetrics.getReplyUnlessFailedFor(req, 2, 0));
}
// Wait for the storage servers to respond
wait(waitForAll(metricFutures));
int firstValidStorageServer = -1;
// Retrieve the size from the storage server responses
for (int i = 0; i < storageServers.size(); i++) {
ErrorOr<StorageMetrics> reply = metricFutures[i].get();
// If the storage server doesn't reply, then return -1
if (!reply.present()) {
TraceEvent("ConsistencyCheck_FailedToFetchMetrics")
.error(reply.getError())
.detail("Begin", printable(shard.begin))
.detail("End", printable(shard.end))
.detail("StorageServer", storageServers[i].id())
.detail("IsTSS", storageServers[i].isTss() ? "True" : "False");
estimatedBytes.push_back(-1);
}
// Add the result to the list of estimates
else if (reply.present()) {
int64_t numBytes = reply.get().bytes;
estimatedBytes.push_back(numBytes);
if (firstValidStorageServer < 0)
firstValidStorageServer = i;
else if (estimatedBytes[firstValidStorageServer] != numBytes) {
TraceEvent("ConsistencyCheck_InconsistentStorageMetrics")
.detail("ByteEstimate1", estimatedBytes[firstValidStorageServer])
.detail("ByteEstimate2", numBytes)
.detail("Begin", shard.begin)
.detail("End", shard.end)
.detail("StorageServer1", storageServers[firstValidStorageServer].id())
.detail("StorageServer2", storageServers[i].id())
.detail("IsTSS",
storageServers[i].isTss() || storageServers[firstValidStorageServer].isTss()
? "True"
: "False");
}
}
}
} catch (Error& e) {
TraceEvent("ConsistencyCheck_ErrorFetchingMetrics")
.error(e)
.detail("Begin", printable(shard.begin))
.detail("End", printable(shard.end));
estimatedBytes.clear();
}
return estimatedBytes;
}
// Comparison function used to compare map elements by value
template <class K, class T>
static bool compareByValue(std::pair<K, T> a, std::pair<K, T> b) {
return a.second < b.second;
}
ACTOR Future<int64_t> getDatabaseSize(Database cx) {
state Transaction tr(cx);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
loop {
try {
StorageMetrics metrics =
wait(tr.getDatabase()->getStorageMetrics(KeyRangeRef(allKeys.begin, keyServersPrefix), 100000));
return metrics.bytes;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// Checks that the data in each shard is the same on each storage server that it resides on. Also performs some
// sanity checks on the sizes of shards and storage servers. Returns false if there is a failure
ACTOR Future<bool> checkDataConsistency(Database cx,
VectorRef<KeyValueRef> keyLocations,
DatabaseConfiguration configuration,
std::map<UID, StorageServerInterface> tssMapping,
ConsistencyCheckWorkload* self) {
// Stores the total number of bytes on each storage server
// In a distributed test, this will be an estimated size
state std::map<UID, int64_t> storageServerSizes;
// Iterate through each shard, checking its values on all of its storage servers
// If shardSampleFactor > 1, then not all shards are processed
// Also, in a distributed data consistency check, each client processes a subset of the shards
// Note: this may cause some shards to be processed more than once or not at all in a non-quiescent database
state int effectiveClientCount = (self->distributed) ? self->clientCount : 1;
state int i = self->clientId * (self->shardSampleFactor + 1);
state int increment =
(self->distributed && !self->firstClient) ? effectiveClientCount * self->shardSampleFactor : 1;
state int rateLimitForThisRound =
self->bytesReadInPreviousRound == 0
? self->rateLimitMax
: std::min(
self->rateLimitMax,
static_cast<int>(ceil(self->bytesReadInPreviousRound /
(float)CLIENT_KNOBS->CONSISTENCY_CHECK_ONE_ROUND_TARGET_COMPLETION_TIME)));
ASSERT(rateLimitForThisRound >= 0 && rateLimitForThisRound <= self->rateLimitMax);
TraceEvent("ConsistencyCheck_RateLimitForThisRound").detail("RateLimit", rateLimitForThisRound);
state Reference<IRateControl> rateLimiter = Reference<IRateControl>(new SpeedLimit(rateLimitForThisRound, 1));
state double rateLimiterStartTime = now();
state int64_t bytesReadInthisRound = 0;
state double dbSize = 100e12;
if (g_network->isSimulated()) {
// This call will get all shard ranges in the database, which is too expensive on real clusters.
int64_t _dbSize = wait(self->getDatabaseSize(cx));
dbSize = _dbSize;
}
state std::vector<KeyRangeRef> ranges;
for (int k = 0; k < keyLocations.size() - 1; k++) {
KeyRangeRef range(keyLocations[k].key, keyLocations[k + 1].key);
ranges.push_back(range);
}
state std::vector<int> shardOrder;
shardOrder.reserve(ranges.size());
for (int k = 0; k < ranges.size(); k++)
shardOrder.push_back(k);
if (self->shuffleShards) {
uint32_t seed = self->sharedRandomNumber + self->repetitions;
DeterministicRandom sharedRandom(seed == 0 ? 1 : seed);
sharedRandom.randomShuffle(shardOrder);
}
for (; i < ranges.size(); i += increment) {
state int shard = shardOrder[i];
state KeyRangeRef range = ranges[shard];
state std::vector<UID> sourceStorageServers;
state std::vector<UID> destStorageServers;
state Transaction tr(cx);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
state int bytesReadInRange = 0;
RangeResult UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY);
decodeKeyServersValue(
UIDtoTagMap, keyLocations[shard].value, sourceStorageServers, destStorageServers, false);
// If the destStorageServers is non-empty, then this shard is being relocated
state bool isRelocating = destStorageServers.size() > 0;
// This check was disabled because we now disable data distribution during the consistency check,
// which can leave shards with dest storage servers.
// Disallow relocations in a quiescent database
/*if(self->firstClient && self->performQuiescentChecks && isRelocating)
{
TraceEvent("ConsistencyCheck_QuiescentShardRelocation").detail("ShardBegin", printable(range.start)).detail("ShardEnd", printable(range.end));
self->testFailure("Shard is being relocated in quiescent database");
return false;
}*/
// In a quiescent database, check that the team size is the same as the desired team size
if (self->firstClient && self->performQuiescentChecks &&
sourceStorageServers.size() != configuration.usableRegions * configuration.storageTeamSize) {
TraceEvent("ConsistencyCheck_InvalidTeamSize")
.detail("ShardBegin", printable(range.begin))
.detail("ShardEnd", printable(range.end))
.detail("SourceTeamSize", sourceStorageServers.size())
.detail("DestServerSize", destStorageServers.size())
.detail("ConfigStorageTeamSize", configuration.storageTeamSize)
.detail("UsableRegions", configuration.usableRegions);
// Record the server reponsible for the problematic shards
int i = 0;
for (auto& id : sourceStorageServers) {
TraceEvent("IncorrectSizeTeamInfo").detail("ServerUID", id).detail("TeamIndex", i++);
}
self->testFailure("Invalid team size");
return false;
}
state std::vector<UID> storageServers = (isRelocating) ? destStorageServers : sourceStorageServers;
state std::vector<StorageServerInterface> storageServerInterfaces;
//TraceEvent("ConsistencyCheck_GetStorageInfo").detail("StorageServers", storageServers.size());
loop {
try {
std::vector<Future<Optional<Value>>> serverListEntries;
serverListEntries.reserve(storageServers.size());
for (int s = 0; s < storageServers.size(); s++)
serverListEntries.push_back(tr.get(serverListKeyFor(storageServers[s])));
state std::vector<Optional<Value>> serverListValues = wait(getAll(serverListEntries));
for (int s = 0; s < serverListValues.size(); s++) {
if (serverListValues[s].present())
storageServerInterfaces.push_back(decodeServerListValue(serverListValues[s].get()));
else if (self->performQuiescentChecks)
self->testFailure("/FF/serverList changing in a quiescent database");
}
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
// add TSS to end of list, if configured and if not relocating
if (!isRelocating && self->performTSSCheck) {
int initialSize = storageServers.size();
for (int i = 0; i < initialSize; i++) {
auto tssPair = tssMapping.find(storageServers[i]);
if (tssPair != tssMapping.end()) {
CODE_PROBE(true, "TSS checked in consistency check");
storageServers.push_back(tssPair->second.id());
storageServerInterfaces.push_back(tssPair->second);
}
}
}
state std::vector<int64_t> estimatedBytes =
wait(self->getStorageSizeEstimate(storageServerInterfaces, range));
// Gets permitted size range of shard
int64_t maxShardSize = getMaxShardSize(dbSize);
state ShardSizeBounds shardBounds = getShardSizeBounds(range, maxShardSize);
if (self->firstClient) {
// If there was an error retrieving shard estimated size
if (self->performQuiescentChecks && estimatedBytes.size() == 0)
self->testFailure("Error fetching storage metrics");
// If running a distributed test, storage server size is an accumulation of shard estimates
else if (self->distributed && self->firstClient)
for (int j = 0; j < storageServers.size(); j++)
storageServerSizes[storageServers[j]] += std::max(estimatedBytes[j], (int64_t)0);
}
// The first client may need to skip the rest of the loop contents if it is just processing this shard to
// get a size estimate
if (!self->firstClient || shard % (effectiveClientCount * self->shardSampleFactor) == 0) {
state int shardKeys = 0;
state int shardBytes = 0;
state int sampledBytes = 0;
state int splitBytes = 0;
state int firstKeySampledBytes = 0;
state int sampledKeys = 0;
state int sampledKeysWithProb = 0;
state double shardVariance = 0;
state bool canSplit = false;
state Key lastSampleKey;
state Key lastStartSampleKey;
state int64_t totalReadAmount = 0;
state KeySelector begin = firstGreaterOrEqual(range.begin);
state Transaction onErrorTr(
cx); // This transaction exists only to access onError and its backoff behavior
// Read a limited number of entries at a time, repeating until all keys in the shard have been read
loop {
try {
lastSampleKey = lastStartSampleKey;
// Get the min version of the storage servers
Version version = wait(self->getVersion(cx, self));
state GetKeyValuesRequest req;
req.begin = begin;
req.end = firstGreaterOrEqual(range.end);
req.limit = 1e4;
req.limitBytes = CLIENT_KNOBS->REPLY_BYTE_LIMIT;
req.version = version;
req.tags = TagSet();
// Try getting the entries in the specified range
state std::vector<Future<ErrorOr<GetKeyValuesReply>>> keyValueFutures;
state int j = 0;
for (j = 0; j < storageServerInterfaces.size(); j++) {
resetReply(req);
keyValueFutures.push_back(
storageServerInterfaces[j].getKeyValues.getReplyUnlessFailedFor(req, 2, 0));
}
wait(waitForAll(keyValueFutures));
// Read the resulting entries
state int firstValidServer = -1;
totalReadAmount = 0;
for (j = 0; j < keyValueFutures.size(); j++) {
ErrorOr<GetKeyValuesReply> rangeResult = keyValueFutures[j].get();
// Compare the results with other storage servers
if (rangeResult.present() && !rangeResult.get().error.present()) {
state GetKeyValuesReply current = rangeResult.get();
totalReadAmount += current.data.expectedSize();
// If we haven't encountered a valid storage server yet, then mark this as the baseline
// to compare against
if (firstValidServer == -1)
firstValidServer = j;
// Compare this shard against the first
else {
GetKeyValuesReply reference = keyValueFutures[firstValidServer].get().get();
if (current.data != reference.data || current.more != reference.more) {
// Be especially verbose if in simulation
if (g_network->isSimulated()) {
int invalidIndex = -1;
printf("\n%sSERVER %d (%s); shard = %s - %s:\n",
storageServerInterfaces[j].isTss() ? "TSS " : "",
j,
storageServerInterfaces[j].address().toString().c_str(),
printable(req.begin.getKey()).c_str(),
printable(req.end.getKey()).c_str());
for (int k = 0; k < current.data.size(); k++) {
printf("%d. %s => %s\n",
k,
printable(current.data[k].key).c_str(),
printable(current.data[k].value).c_str());
if (invalidIndex < 0 &&
(k >= reference.data.size() ||
current.data[k].key != reference.data[k].key ||
current.data[k].value != reference.data[k].value))
invalidIndex = k;
}
printf(
"\n%sSERVER %d (%s); shard = %s - %s:\n",
storageServerInterfaces[firstValidServer].isTss() ? "TSS " : "",
firstValidServer,
storageServerInterfaces[firstValidServer].address().toString().c_str(),
printable(req.begin.getKey()).c_str(),
printable(req.end.getKey()).c_str());
for (int k = 0; k < reference.data.size(); k++) {
printf("%d. %s => %s\n",
k,
printable(reference.data[k].key).c_str(),
printable(reference.data[k].value).c_str());
if (invalidIndex < 0 &&
(k >= current.data.size() ||
reference.data[k].key != current.data[k].key ||
reference.data[k].value != current.data[k].value))
invalidIndex = k;
}
printf("\nMISMATCH AT %d\n\n", invalidIndex);
}
// Data for trace event
// The number of keys unique to the current shard
int currentUniques = 0;
// The number of keys unique to the reference shard
int referenceUniques = 0;
// The number of keys in both shards with conflicting values
int valueMismatches = 0;
// The number of keys in both shards with matching values
int matchingKVPairs = 0;
// Last unique key on the current shard
KeyRef currentUniqueKey;
// Last unique key on the reference shard
KeyRef referenceUniqueKey;
// Last value mismatch
KeyRef valueMismatchKey;
// Loop indeces
int currentI = 0;
int referenceI = 0;
while (currentI < current.data.size() || referenceI < reference.data.size()) {
if (currentI >= current.data.size()) {
referenceUniqueKey = reference.data[referenceI].key;
referenceUniques++;
referenceI++;
} else if (referenceI >= reference.data.size()) {
currentUniqueKey = current.data[currentI].key;
currentUniques++;
currentI++;
} else {
KeyValueRef currentKV = current.data[currentI];
KeyValueRef referenceKV = reference.data[referenceI];
if (currentKV.key == referenceKV.key) {
if (currentKV.value == referenceKV.value)
matchingKVPairs++;
else {
valueMismatchKey = currentKV.key;
valueMismatches++;
}
currentI++;
referenceI++;
} else if (currentKV.key < referenceKV.key) {
currentUniqueKey = currentKV.key;
currentUniques++;
currentI++;
} else {
referenceUniqueKey = referenceKV.key;
referenceUniques++;
referenceI++;
}
}
}
TraceEvent("ConsistencyCheck_DataInconsistent")
.detail(format("StorageServer%d", j).c_str(), storageServers[j].toString())
.detail(format("StorageServer%d", firstValidServer).c_str(),
storageServers[firstValidServer].toString())
.detail("ShardBegin", req.begin.getKey())
.detail("ShardEnd", req.end.getKey())
.detail("VersionNumber", req.version)
.detail(format("Server%dUniques", j).c_str(), currentUniques)
.detail(format("Server%dUniqueKey", j).c_str(), currentUniqueKey)
.detail(format("Server%dUniques", firstValidServer).c_str(),
referenceUniques)
.detail(format("Server%dUniqueKey", firstValidServer).c_str(),
referenceUniqueKey)
.detail("ValueMismatches", valueMismatches)
.detail("ValueMismatchKey", valueMismatchKey)
.detail("MatchingKVPairs", matchingKVPairs)
.detail("IsTSS",
storageServerInterfaces[j].isTss() ||
storageServerInterfaces[firstValidServer].isTss()
? "True"
: "False");
if ((g_network->isSimulated() &&
g_simulator->tssMode != ISimulator::TSSMode::EnabledDropMutations) ||
(!storageServerInterfaces[j].isTss() &&
!storageServerInterfaces[firstValidServer].isTss())) {
self->testFailure("Data inconsistent", true);
return false;
}
}
}
}
// If the data is not available and we aren't relocating this shard
else if (!isRelocating) {
Error e =
rangeResult.isError() ? rangeResult.getError() : rangeResult.get().error.get();
TraceEvent("ConsistencyCheck_StorageServerUnavailable")
.errorUnsuppressed(e)
.suppressFor(1.0)
.detail("StorageServer", storageServers[j])
.detail("ShardBegin", printable(range.begin))
.detail("ShardEnd", printable(range.end))
.detail("Address", storageServerInterfaces[j].address())
.detail("UID", storageServerInterfaces[j].id())
.detail("GetKeyValuesToken",
storageServerInterfaces[j].getKeyValues.getEndpoint().token)
.detail("IsTSS", storageServerInterfaces[j].isTss() ? "True" : "False");
// All shards should be available in quiscence
if (self->performQuiescentChecks && !storageServerInterfaces[j].isTss()) {
self->testFailure("Storage server unavailable");
return false;
}
}
}
if (firstValidServer >= 0) {
VectorRef<KeyValueRef> data = keyValueFutures[firstValidServer].get().get().data;
// Calculate the size of the shard, the variance of the shard size estimate, and the correct
// shard size estimate
for (int k = 0; k < data.size(); k++) {
ByteSampleInfo sampleInfo = isKeyValueInSample(data[k]);
shardBytes += sampleInfo.size;
double itemProbability = ((double)sampleInfo.size) / sampleInfo.sampledSize;
if (itemProbability < 1)
shardVariance += itemProbability * (1 - itemProbability) *
pow((double)sampleInfo.sampledSize, 2);
if (sampleInfo.inSample) {
sampledBytes += sampleInfo.sampledSize;
if (!canSplit && sampledBytes >= shardBounds.min.bytes &&
data[k].key.size() <= CLIENT_KNOBS->SPLIT_KEY_SIZE_LIMIT &&
sampledBytes <= shardBounds.max.bytes *
CLIENT_KNOBS->STORAGE_METRICS_UNFAIR_SPLIT_LIMIT / 2) {
canSplit = true;
splitBytes = sampledBytes;
}
/*TraceEvent("ConsistencyCheck_ByteSample").detail("ShardBegin", printable(range.begin)).detail("ShardEnd", printable(range.end))
.detail("SampledBytes", sampleInfo.sampledSize).detail("Key",
printable(data[k].key)).detail("KeySize", data[k].key.size()).detail("ValueSize",
data[k].value.size());*/
// In data distribution, the splitting process ignores the first key in a shard.
// Thus, we shouldn't consider it when validating the upper bound of estimated shard
// sizes
if (k == 0)
firstKeySampledBytes += sampleInfo.sampledSize;
sampledKeys++;
if (itemProbability < 1) {
sampledKeysWithProb++;
}
}
}
// Accumulate number of keys in this shard
shardKeys += data.size();
}
// after requesting each shard, enforce rate limit based on how much data will likely be read
if (rateLimitForThisRound > 0) {
wait(rateLimiter->getAllowance(totalReadAmount));
// Set ratelimit to max allowed if current round has been going on for a while
if (now() - rateLimiterStartTime >
1.1 * CLIENT_KNOBS->CONSISTENCY_CHECK_ONE_ROUND_TARGET_COMPLETION_TIME &&
rateLimitForThisRound != self->rateLimitMax) {
rateLimitForThisRound = self->rateLimitMax;
rateLimiter = Reference<IRateControl>(new SpeedLimit(rateLimitForThisRound, 1));
rateLimiterStartTime = now();
TraceEvent(SevInfo, "ConsistencyCheck_RateLimitSetMaxForThisRound")
.detail("RateLimit", rateLimitForThisRound);
}
}
bytesReadInRange += totalReadAmount;
bytesReadInthisRound += totalReadAmount;
// Advance to the next set of entries
if (firstValidServer >= 0 && keyValueFutures[firstValidServer].get().get().more) {
VectorRef<KeyValueRef> result = keyValueFutures[firstValidServer].get().get().data;
ASSERT(result.size() > 0);
begin = firstGreaterThan(result[result.size() - 1].key);
ASSERT(begin.getKey() != allKeys.end);
lastStartSampleKey = lastSampleKey;
} else
break;
} catch (Error& e) {
state Error err = e;
wait(onErrorTr.onError(err));
TraceEvent("ConsistencyCheck_RetryDataConsistency").error(err);
}
}
canSplit = canSplit && sampledBytes - splitBytes >= shardBounds.min.bytes && sampledBytes > splitBytes;
// Update the size of all storage servers containing this shard
// This is only done in a non-distributed consistency check; the distributed check uses shard size
// estimates
if (!self->distributed)
for (int j = 0; j < storageServers.size(); j++)
storageServerSizes[storageServers[j]] += shardBytes;
// FIXME: Where is this intended to be used?
[[maybe_unused]] bool hasValidEstimate = estimatedBytes.size() > 0;
// If the storage servers' sampled estimate of shard size is different from ours
if (self->performQuiescentChecks) {
for (int j = 0; j < estimatedBytes.size(); j++) {
if (estimatedBytes[j] >= 0 && estimatedBytes[j] != sampledBytes) {
TraceEvent("ConsistencyCheck_IncorrectEstimate")
.detail("EstimatedBytes", estimatedBytes[j])
.detail("CorrectSampledBytes", sampledBytes)
.detail("StorageServer", storageServers[j])
.detail("IsTSS", storageServerInterfaces[j].isTss() ? "True" : "False");
if (!storageServerInterfaces[j].isTss()) {
self->testFailure("Storage servers had incorrect sampled estimate");
}
hasValidEstimate = false;
break;
} else if (estimatedBytes[j] < 0 &&
((g_network->isSimulated() &&
g_simulator->tssMode <= ISimulator::TSSMode::EnabledNormal) ||
!storageServerInterfaces[j].isTss())) {
// Ignore a non-responding TSS outside of simulation, or if tss fault injection is enabled
hasValidEstimate = false;
break;
}
}
}
// Compute the difference between the shard size estimate and its actual size. If it is sufficiently
// large, then fail
double stdDev = sqrt(shardVariance);
double failErrorNumStdDev = 7;
int estimateError = abs(shardBytes - sampledBytes);
// Only perform the check if there are sufficient keys to get a distribution that should resemble a
// normal distribution
if (sampledKeysWithProb > 30 && estimateError > failErrorNumStdDev * stdDev) {
double numStdDev = estimateError / sqrt(shardVariance);
TraceEvent("ConsistencyCheck_InaccurateShardEstimate")
.detail("Min", shardBounds.min.bytes)
.detail("Max", shardBounds.max.bytes)
.detail("Estimate", sampledBytes)
.detail("Actual", shardBytes)
.detail("NumStdDev", numStdDev)
.detail("Variance", shardVariance)
.detail("StdDev", stdDev)
.detail("ShardBegin", printable(range.begin))
.detail("ShardEnd", printable(range.end))
.detail("NumKeys", shardKeys)
.detail("NumSampledKeys", sampledKeys)
.detail("NumSampledKeysWithProb", sampledKeysWithProb);
self->testFailure(format("Shard size is more than %f std dev from estimate", failErrorNumStdDev));
}
// In a quiescent database, check that the (estimated) size of the shard is within permitted bounds
// Min and max shard sizes have a 3 * shardBounds.permittedError.bytes cushion for error since shard
// sizes are not precise Shard splits ignore the first key in a shard, so its size shouldn't be
// considered when checking the upper bound 0xff shards are not checked
if (canSplit && sampledKeys > 5 && self->performQuiescentChecks &&
!range.begin.startsWith(keyServersPrefix) &&
(sampledBytes < shardBounds.min.bytes - 3 * shardBounds.permittedError.bytes ||
sampledBytes - firstKeySampledBytes >
shardBounds.max.bytes + 3 * shardBounds.permittedError.bytes)) {
TraceEvent("ConsistencyCheck_InvalidShardSize")
.detail("Min", shardBounds.min.bytes)
.detail("Max", shardBounds.max.bytes)
.detail("Size", shardBytes)
.detail("EstimatedSize", sampledBytes)
.detail("ShardBegin", printable(range.begin))
.detail("ShardEnd", printable(range.end))
.detail("ShardCount", ranges.size())
.detail("SampledKeys", sampledKeys);
self->testFailure(format("Shard size in quiescent database is too %s",
(sampledBytes < shardBounds.min.bytes) ? "small" : "large"));
return false;
}
}
if (bytesReadInRange > 0) {
TraceEvent("ConsistencyCheck_ReadRange")
.suppressFor(1.0)
.detail("Range", range)
.detail("BytesRead", bytesReadInRange);
}
}
// SOMEDAY: when background data distribution is implemented, include this test
// In a quiescent database, check that the sizes of storage servers are roughly the same
/*if(self->performQuiescentChecks)
{
auto minStorageServer = std::min_element(storageServerSizes.begin(), storageServerSizes.end(),
ConsistencyCheckWorkload::compareByValue<UID, int64_t>); auto maxStorageServer =
std::max_element(storageServerSizes.begin(), storageServerSizes.end(),
ConsistencyCheckWorkload::compareByValue<UID, int64_t>);
int bias = SERVER_KNOBS->MIN_SHARD_BYTES;
if(1.1 * (minStorageServer->second + SERVER_KNOBS->MIN_SHARD_BYTES) < maxStorageServer->second +
SERVER_KNOBS->MIN_SHARD_BYTES)
{
TraceEvent("ConsistencyCheck_InconsistentStorageServerSizes").detail("MinSize", minStorageServer->second).detail("MaxSize", maxStorageServer->second)
.detail("MinStorageServer", minStorageServer->first).detail("MaxStorageServer",
maxStorageServer->first);
self->testFailure(format("Storage servers differ significantly in size by a factor of %f",
((double)maxStorageServer->second) / minStorageServer->second)); return false;
}
}*/
self->bytesReadInPreviousRound = bytesReadInthisRound;
return true;
}
// Returns true if any storage servers have the exact same network address or are not using the correct key value
// store type
ACTOR Future<bool> checkForUndesirableServers(Database cx,